Systemd.unit
From: https://www.freedesktop.org/software/systemd/man/latest/systemd.unit.html


Man Pages


Name
systemd.unit — Unit configuration



Synopsis service.service, socket.socket, device.device, mount.mount, automount.automount, swap.swap, target.target, path.path, timer.timer, slice.slice, scope.scope
System Unit Search Path /etc/systemd/system.control/* /run/systemd/system.control/* /run/systemd/transient/* /run/systemd/generator.early/* /etc/systemd/system/* /etc/systemd/system.attached/* /run/systemd/system/* /run/systemd/system.attached/* /run/systemd/generator/* … /usr/lib/systemd/system/* /run/systemd/generator.late/*
User Unit Search Path ~/.config/systemd/user.control/* $XDG_RUNTIME_DIR/systemd/user.control/* $XDG_RUNTIME_DIR/systemd/transient/* $XDG_RUNTIME_DIR/systemd/generator.early/* ~/.config/systemd/user/* $XDG_CONFIG_DIRS/systemd/user/* /etc/systemd/user/* $XDG_RUNTIME_DIR/systemd/user/* /run/systemd/user/* $XDG_RUNTIME_DIR/systemd/generator/* $XDG_DATA_HOME/systemd/user/* $XDG_DATA_DIRS/systemd/user/* … /usr/lib/systemd/user/* $XDG_RUNTIME_DIR/systemd/generator.late/*
Description A unit file is a plain text ini-style file that encodes information about a service, a socket, a device, a mount point, an automount point, a swap file or partition, a start-up target, a watched file system path, a timer controlled and supervised by systemd(1), a resource management slice or a group of externally created processes. See systemd.syntax(7) for a general description of the syntax. This man page lists the common configuration options of all the unit types. These options need to be configured in the [Unit] or [Install] sections of the unit files. In addition to the generic [Unit] and [Install] sections described here, each unit may have a type-specific section, e.g. [Service] for a service unit. See the respective man pages for more information: systemd.service(5), systemd.socket(5), systemd.device(5), systemd.mount(5), systemd.automount(5), systemd.swap(5), systemd.target(5), systemd.path(5), systemd.timer(5), systemd.slice(5), systemd.scope(5). Unit files are loaded from a set of paths determined during compilation, described in the next section. Valid unit names consist of a "unit name prefix", and a suffix specifying the unit type which begins with a dot. The "unit name prefix" must consist of one or more valid characters: ASCII letters, digits, The total length of the unit name including the suffix must not exceed 255 chars. The unit type suffix must be one of: ".service" ".socket" ".device" ".mount" ".automount" ".swap" ".target" ".path" ".timer" ".slice" ".scope" Unit names can be parameterized by a single argument called the "instance name". The unit is then constructed based on a "template file" which serves as the definition of multiple services or other units. A template unit must have a single "@" at the end of the unit name prefix (right before the type suffix). The name of the full unit is formed by inserting the instance name between "@" and the unit type suffix. In the unit file itself, the instance parameter may be referred to using "%i" and other specifiers, see below. Unit files may contain additional options on top of those listed here. If systemd encounters an unknown option, it will write a warning log message but continue loading the unit. If an option or section name is prefixed with X-, it is ignored completely by systemd. Options within an ignored section do not need the prefix. Applications may use this to include additional information in the unit files. To access those options, applications need to parse the unit files on their own. Units can be aliased (have an alternative name), by creating a symlink from the new name to the existing name in one of the unit search paths. For example, systemd-networkd.service has the alias dbus-org.freedesktop.network1.service, created during installation as a symlink, so when systemd is asked through D-Bus to load dbus-org.freedesktop.network1.service, it'll load systemd-networkd.service. As another example, default.target — the default system target started at boot — is commonly aliased to either multi-user.target or graphical.target to select what is started by default. Alias names may be used in commands like disable, start, stop, status, and similar, and in all unit dependency directives, including Wants=, Requires=, Before=, After=. Aliases cannot be used with the preset command. Aliases obey the following restrictions: a unit of a certain type (".service", ".socket", …) can only be aliased by a name with the same type suffix. A plain unit (not a template or an instance), may only be aliased by a plain name. A template instance may only be aliased by another template instance, and the instance part must be identical. A template may be aliased by another template (in which case the alias applies to all instances of the template). As a special case, a template instance (e.g. "alias@inst.service") may be a symlink to different template (e.g. "template@inst.service"). In that case, just this specific instance is aliased, while other instances of the template (e.g. "alias@foo.service", "alias@bar.service") are not aliased. Those rules preserve the requirement that the instance (if any) is always uniquely defined for a given unit and all its aliases. The target of alias symlink must point to a valid unit file location, i.e. the symlink target name must match the symlink source name as described, and the destination path must be in one of the unit search paths, see UNIT FILE LOAD PATH section below for more details. Note that the target file may not exist, i.e. the symlink may be dangling. Unit files may specify aliases through the Alias= directive in the [Install] section. When the unit is enabled, symlinks will be created for those names, and removed when the unit is disabled. For example, reboot.target specifies Alias=ctrl-alt-del.target, so when enabled, the symlink /etc/systemd/system/ctrl-alt-del.service pointing to the reboot.target file will be created, and when Ctrl+Alt+Del is invoked, systemd will look for the ctrl-alt-del.service and execute reboot.service. systemd does not look at the [Install] section at all during normal operation, so any directives in that section only have an effect through the symlinks created during enablement. Along with a unit file foo.service, the directory foo.service.wants/ may exist. All unit files symlinked from such a directory are implicitly added as dependencies of type Wants= to the unit. Similar functionality exists for Requires= type dependencies as well, the directory suffix is .requires/ in this case. This functionality is useful to hook units into the start-up of other units, without having to modify their unit files. For details about the semantics of Wants= and Requires=, see below. The preferred way to create symlinks in the .wants/ or .requires/ directories is by specifying the dependency in [Install] section of the target unit, and creating the symlink in the file system with the enable or preset commands of systemctl(1). The target can be a normal unit (either plain or a specific instance of a template unit). In case when the source unit is a template, the target can also be a template, in which case the instance will be "propagated" to the target unit to form a valid unit instance. The target of symlinks in .wants/ or .requires/ must thus point to a valid unit file location, i.e. the symlink target name must satisfy the described requirements, and the destination path must be in one of the unit search paths, see UNIT FILE LOAD PATH section below for more details. Note that the target file may not exist, i.e. the symlink may be dangling. Along with a unit file foo.service, a "drop-in" directory foo.service.d/ may exist. All files with the suffix ".conf" from this directory will be merged in the alphanumeric order and parsed after the main unit file itself has been parsed. This is useful to alter or add configuration settings for a unit, without having to modify unit files. Each drop-in file must contain appropriate section headers. For instantiated units, this logic will first look for the instance ".d/" subdirectory (e.g. "foo@bar.service.d/") and read its ".conf" files, followed by the template ".d/" subdirectory (e.g. "foo@.service.d/") and the ".conf" files there. Moreover for unit names containing dashes ("-"), the set of directories generated by repeatedly truncating the unit name after all dashes is searched too. Specifically, for a unit name foo-bar-baz.service not only the regular drop-in directory foo-bar-baz.service.d/ is searched but also both foo-bar-.service.d/ and foo -.service.d/. This is useful for defining common drop-ins for a set of related units, whose names begin with a common prefix. This scheme is particularly useful for mount, automount and slice units, whose systematic naming structure is built around dashes as component separators. Note that equally named drop-in files further down the prefix hierarchy override those further up, i.e. foo-bar-.service.d/10-override.conf overrides foo -.service.d/10-override.conf. In cases of unit aliases (described above), dropins for the aliased name and all aliases are loaded. In the example of default.target aliasing graphical.target, default.target.d/, default.target.wants/, default.target.requires/, graphical.target.d/, graphical.target.wants/, graphical.target.requires/ would all be read. For templates, dropins for the template, any template aliases, the template instance, and all alias instances are read. When just a specific template instance is aliased, then the dropins for the target template, the target template instance, and the alias template instance are read. In addition to /etc/systemd/system, the drop-in ".d/" directories for system services can be placed in /usr/lib/systemd/system or /run/systemd/system directories. Drop-in files in /etc/ take precedence over those in /run/ which in turn take precedence over those in /usr/lib/. Drop-in files under any of these directories take precedence over unit files wherever located. Multiple drop-in files with different names are applied in lexicographic order, regardless of which of the directories they reside in. Units also support a top-level drop-in with type.d/, where type may be e.g. "service" or "socket", that allows altering or adding to the settings of all corresponding unit files on the system. The formatting and precedence of applying drop-in configurations follow what is defined above. Files in type.d/ have lower precedence compared to files in name-specific override directories. The usual rules apply: multiple drop-in files with different names are applied in lexicographic order, regardless of which of the directories they reside in, so a file in type.d/ applies to a unit only if there are no drop-ins or masks with that name in directories with higher precedence. See Examples. Note that while systemd offers a flexible dependency system between units it is recommended to use this functionality only sparingly and instead rely on techniques such as bus-based or socket-based activation which make dependencies implicit, resulting in a both simpler and more flexible system. As mentioned above, a unit may be instantiated from a template file. This allows creation of multiple units from a single configuration file. If systemd looks for a unit configuration file, it will first search for the literal unit name in the file system. If that yields no success and the unit name contains an "@" character, systemd will look for a unit template that shares the same name but with the instance string (i.e. the part between the "@" character and the suffix) removed. Example: if a service getty@tty3.service is requested and no file by that name is found, systemd will look for getty@.service and instantiate a service from that configuration file if it is found. To refer to the instance string from within the configuration file you may use the special "%i" specifier in many of the configuration options. See below for details. If a unit file is empty (i.e. has the file size 0) or is symlinked to /dev/null, its configuration will not be loaded and it appears with a load state of "masked", and cannot be activated. Use this as an effective way to fully disable a unit, making it impossible to start it even manually. The unit file format is covered by the Interface Portability and Stability Promise. Targets
UNITLOADACTIVESUBDESCRIPTION
basic.targetloadedactiveactiveBasic System
bluetooth.targetloadedactiveactiveBluetooth Support
cryptsetup.targetloadedactiveactiveLocal Encrypted Volumes
getty-pre.targetloadedactiveactivePreparation for Logins
getty.targetloadedactiveactiveLogin Prompts
graphical.targetloadedactiveactiveGraphical Interface
local-fs-pre.targetloadedactiveactivePreparation for Local File Systems
local-fs.targetloadedactiveactiveLocal File Systems
multi-user.targetloadedactiveactiveMulti-User System
network-online.targetloadedactiveactiveNetwork is Online
network-pre.targetloadedactiveactivePreparation for Network
network.targetloadedactiveactiveNetwork
nss-lookup.targetloadedactiveactiveHost and Network Name Lookups
nss-user-lookup.targetloadedactiveactiveUser and Group Name Lookups
paths.targetloadedactiveactivePath Units
remote-fs.targetloadedactiveactiveRemote File Systems
slices.targetloadedactiveactiveSlice Units
snapd.mounts-pre.targetloadedactiveactiveMounting snaps
snapd.mounts.targetloadedactiveactiveMounted snaps
sockets.targetloadedactiveactiveSocket Units
sound.targetloadedactiveactiveSound Card
swap.targetloadedactiveactiveSwaps
sysinit.targetloadedactiveactiveSystem Initialization
time-set.targetloadedactiveactiveSystem Time Set
timers.targetloadedactiveactiveTimer Units
veritysetup.targetloadedactiveactiveLocal Verity Protected Volumes
LOAD = Reflects whether the unit definition was properly loaded. ACTIVE = The high-level unit activation state, i.e. generalization of SUB. SUB = The low-level unit activation state, values depend on unit type. 26 loaded units listed. Pass --all to see loaded but inactive units, too. To show all installed unit files use 'systemctl list-unit-files'.
String Escaping for Inclusion in Unit Names Sometimes it is useful to convert arbitrary strings into unit names. To facilitate this, a method of string escaping is used, in order to map strings containing arbitrary byte values (except NUL) into valid unit names and their restricted character set. A common special case are unit names that reflect paths to objects in the file system hierarchy. Example: a device unit dev-sda.device refers to a device with the device node /dev/sda in the file system. The escaping algorithm operates as follows: given a string, any "/" character is replaced by "-", and all other characters which are not ASCII alphanumerics, ":" , "_" or "." are replaced by C-style "\x2d" escapes. In addition, "." is replaced with such a C-style escape when it would appear as the first character in the escaped string. When the input qualifies as absolute file system path, this algorithm is extended slightly: the path to the root directory "/" is encoded as single dash "-". In addition, any leading, trailing or duplicate "/" characters are removed from the string before transformation. Example: /foo//bar/baz/ becomes "foo-bar-baz". This escaping is fully reversible, as long as it is known whether the escaped string was a path (the unescaping results are different for paths and non-path strings). The systemd-escape(1) command may be used to apply and reverse escaping on arbitrary strings. Use systemd-escape --path to escape path strings, and systemd-escape without --path otherwise.
Automatic dependencies
Implicit Dependencies A number of unit dependencies are implicitly established, depending on unit type and unit configuration. These implicit dependencies can make unit configuration file cleaner. For the implicit dependencies in each unit type, please refer to section "Implicit Dependencies" in respective man pages. For example, service units with Type=dbus automatically acquire dependencies of type Requires= and After= on dbus.socket. See systemd.service(5) for details.
Default Dependencies Default dependencies are similar to implicit dependencies, but can be turned on and off by setting DefaultDependencies= to yes (the default) and no, while implicit dependencies are always in effect. See section "Default Dependencies" in respective man pages for the effect of enabling DefaultDependencies= in each unit types. For example, target units will complement all configured dependencies of type Wants= or Requires= with dependencies of type After=. See systemd.target(5) for details. Note that this behavior can be opted out by setting DefaultDependencies=no in the specified units, or it can be selectively overridden via an explicit Before= dependency.
Unit File Load Path Unit files are loaded from a set of paths determined during compilation, described in the two tables below. Unit files found in directories listed earlier override files with the same name in directories lower in the list. When the variable $SYSTEMD_UNIT_PATH is set, the contents of this variable overrides the unit load path. If $SYSTEMD_UNIT_PATH ends with an empty component (":"), the usual unit load path will be appended to the contents of the variable. Table 1. Load path when running in system mode (--system).
PathDescription
/etc/systemd/system.controlPersistent and transient configuration created using the dbus API
/run/systemd/system.control
/run/systemd/transientDynamic configuration for transient units
/run/systemd/generator.earlyGenerated units with high priority (see early -dir in systemd.generator(7))
/etc/systemd/systemSystem units created by the administrator
/run/systemd/systemRuntime units
/run/systemd/generatorGenerated units with medium priority (see normal -dir in systemd.generator(7))
/usr/local/lib/systemd/systemSystem units installed by the administrator
/usr/lib/systemd/systemSystem units installed by the distribution package manager
/run/systemd/generator.lateGenerated units with low priority (see late -dir in systemd.generator(7))
Table 2. Load path when running in user mode (--user).
PathDescription
$XDG_CONFIG_HOME/systemd/user.control or ~/.config/systemd/user.controlPersistent and transient configuration created using the dbus API ($XDG_CONFIG_HOME is used if set, ~/.config otherwise)
$XDG_RUNTIME_DIR/systemd/user.control
$XDG_RUNTIME_DIR/systemd/transientDynamic configuration for transient units
$XDG_RUNTIME_DIR/systemd/generator.earlyGenerated units with high priority (see early-dir in systemd.generator(7))
$XDG_CONFIG_HOME/systemd/user or $HOME/.config/systemd/userUser configuration ($XDG_CONFIG_HOME is used if set, ~/.config otherwise)
$XDG_CONFIG_DIRS/systemd/user or /etc/xdg/systemd/userAdditional configuration directories as specified by the XDG base directory specification ($XDG_CONFIG_DIRS is used if set, /etc/xdg otherwise)
/etc/systemd/userUser units created by the administrator
$XDG_RUNTIME_DIR/systemd/userRuntime units (only used when $XDG_RUNTIME_DIR is set)
/run/systemd/userRuntime units
$XDG_RUNTIME_DIR/systemd/generatorGenerated units with medium priority (see normal-dir in systemd.generator(7))
$XDG_DATA_HOME/systemd/user or $HOME/.local/share/systemd/userUnits of packages that have been installed in the home directory ($XDG_DATA_HOME is used if set, ~/.local/share otherwise)
$XDG_DATA_DIRS/systemd/user or /usr/local/share/systemd/user and /usr/share/systemd/userAdditional data directories as specified by the XDG base directory specification ($XDG_DATA_DIRS is used if set, /usr/local/share and /usr/share otherwise)
$dir/systemd/user for each $dir in $XDG_DATA_DIRSAdditional locations for installed user units, one for each entry in $XDG_DATA_DIRS
/usr/local/lib/systemd/userUser units installed by the administrator
/usr/lib/systemd/userUser units installed by the distribution package manager
$XDG_RUNTIME_DIR/systemd/generator.lateGenerated units with low priority (see late-dir in systemd.generator(7))
The set of load paths for the user manager instance may be augmented or changed using various environment variables. And environment variables may in turn be set using environment generators, see systemd.environment-generator(7) . In particular, $XDG_DATA_HOME and $XDG_DATA_DIRS may be easily set using systemd-environment-d-generator(8). Thus, directories listed here are just the defaults. To see the actual list that would be used based on compilation options and current environment use systemd-analyze --user unit-paths Moreover, additional units might be loaded into systemd from directories not on the unit load path by creating a symlink pointing to a unit file in the directories. You can use systemctl link for this; see systemctl(1). The file system where the linked unit files are located must be accessible when systemd is started (e.g. anything underneath /home/ or /var/ is not allowed, unless those directories are located on the root file system). It is important to distinguish "linked unit files" from "unit file aliases": any symlink where the symlink target is within the unit load path becomes an alias: the source name and the target file name must satisfy specific constraints listed above in the discussion of aliases, but the symlink target doesn't have to exist, and in fact the symlink target path is not used, except to check whether the target is within the unit load path. In contrast, a symlink which goes outside of the unit load path signifies a linked unit file. The symlink is followed when loading the file, but the destination name is otherwise unused (and may even not be a valid unit file name). For example, symlinks /etc/systemd/system/alias1.service → service1.service, /etc/systemd/system/alias2.service → /usr/lib/systemd/service1.service, /etc/systemd/system/alias3.service → /etc/systemd/system/service1.service are all valid aliases and service1.service will have four names, even if the unit file is located at /run/systemd/system/service1.service. In contrast, a symlink /etc/systemd/system/link1.service → ../link1_service_file means that link1.service is a "linked unit" and the contents of /etc/systemd/link1_service_file provide its configuration.
Unit Garbage Collection The system and service manager loads a unit's configuration automatically when a unit is referenced for the first time. It will automatically unload the unit configuration and state again when the unit is not needed anymore ("garbage collection"). A unit may be referenced through a number of different mechanisms:
  1. Another loaded unit references it with a dependency such as After=, Wants=, …
  2. The unit is currently starting, running, reloading or stopping.
  3. The unit is currently in the failed state. (But see below.)
  4. A job for the unit is pending.
  5. The unit is pinned by an active IPC client program.
  6. The unit is a special "perpetual" unit that is always active and loaded. Examples for perpetual units are the root mount unit-.mount or the scope unit init.scope that the service manager itself lives in.
  7. The unit has running processes associated with it.
The garbage collection logic may be altered with the CollectMode= option, which allows configuration whether automatic unloading of units that are in failed state is permissible, see below. Note that when a unit's configuration and state is unloaded, all execution results, such as exit codes, exit signals, resource consumption and other statistics are lost, except for what is stored in the log subsystem. Use systemctl daemon-reload or an equivalent command to reload unit configuration while the unit is already loaded. In this case all configuration settings are flushed out and replaced with the new configuration (which however might not be in effect immediately), however all runtime state is saved/restored.
[Unit] Section Options The unit file may include a [Unit] section, which carries generic information about the unit that is not dependent on the type of unit: Description=
A short human readable title of the unit. This may be used by systemd (and other UIs) as a user-visible label for the unit, so this string should identify the unit rather than describe it, despite the name. This string also shouldn't just repeat the unit name. "Apache2 Web Server" is a good example. Bad examples are "high-performance light-weight HTTP server" (too generic) or "Apache2" (meaningless for people who do not know Apache, duplicates the unit name). systemd may use this string as a noun in status messages ("Starting description...", "Started description.", "Reached target description.", "Failed to start description."), so it should be capitalized, and should not be a full sentence, or a phrase with a continuous verb. Bad examples include "exiting the container" or "updating the database once per day.". Added in version 201.
Documentation=
A space-separated list of URIs referencing documentation for this unit or its configuration. Accepted are only URIs of the types "http://", "https://" , "file:", "info:", "man:". For more information about the syntax of these URIs, see uri(7). The URIs should be listed in order of relevance, starting with the most relevant. It is a good idea to first reference documentation that explains what the unit's purpose is, followed by how it is configured, followed by any other related documentation. This option may be specified more than once, in which case the specified list of URIs is merged. If the empty string is assigned to this option, the list is reset and all prior assignments will have no effect. Added in version 201.
Wants=
Configures (weak) requirement dependencies on other units. This option may be specified more than once or multiple space-separated units may be specified in one option in which case dependencies for all listed names will be created. Dependencies of this type may also be configured outside of the unit configuration file by adding a symlink to a .wants/ directory accompanying the unit file. For details, see above. Units listed in this option will be started if the configuring unit is. However, if the listed units fail to start or cannot be added to the transaction, this has no impact on the validity of the transaction as a whole, and this unit will still be started. This is the recommended way to hook the start-up of one unit to the start-up of another unit. Note that requirement dependencies do not influence the order in which services are started or stopped. This has to be configured independently with the After= or Before= options. If unit foo.service pulls in unit bar.service as configured with Wants= and no ordering is configured with After= or Before=, then both units will be started simultaneously and without any delay between them if foo.service is activated. Added in version 201.
Requires=
Similar to Wants=, but declares a stronger requirement dependency. Dependencies of this type may also be configured by adding a symlink to a .requires/ directory accompanying the unit file. If this unit gets activated, the units listed will be activated as well. If one of the other units fails to activate, and an ordering dependency After= on the failing unit is set, this unit will not be started. Besides, with or without specifying After= , this unit will be stopped (or restarted) if one of the other units is explicitly stopped (or restarted). Often, it is a better choice to use Wants= instead of Requires= in order to achieve a system that is more robust when dealing with failing services. Note that this dependency type does not imply that the other unit always has to be in active state when this unit is running. Specifically: failing condition checks (such as ConditionPathExists=, ConditionPathIsSymbolicLink=, … — see below) do not cause the start job of a unit with a Requires= dependency on it to fail. Also, some unit types may deactivate on their own (for example, a service process may decide to exit cleanly, or a device may be unplugged by the user), which is not propagated to units having a Requires= dependency. Use the BindsTo= dependency type together with After= to ensure that a unit may never be in active state without a specific other unit also in active state (see below). Added in version 201.
Requisite=
Similar to Requires=. However, if the units listed here are not started already, they will not be started and the starting of this unit will fail immediately. Requisite= does not imply an ordering dependency, even if both units are started in the same transaction. Hence this setting should usually be combined with After=, to ensure this unit is not started before the other unit. When Requisite=b.service is used on a.service, this dependency will show as RequisiteOf=a.service in property listing of b.service. RequisiteOf= dependency cannot be specified directly. Added in version 201.
BindsTo=
Configures requirement dependencies, very similar in style to Requires=. However, this dependency type is stronger: in addition to the effect of Requires= it declares that if the unit bound to is stopped, this unit will be stopped too. This means a unit bound to another unit that suddenly enters inactive state will be stopped too. Units can suddenly, unexpectedly enter inactive state for different reasons: the main process of a service unit might terminate on its own choice, the backing device of a device unit might be unplugged or the mount point of a mount unit might be unmounted without involvement of the system and service manager. When used in conjunction with After= on the same unit the behaviour of BindsTo= is even stronger. In this case, the unit bound to strictly has to be in active state for this unit to also be in active state. This not only means a unit bound to another unit that suddenly enters inactive state, but also one that is bound to another unit that gets skipped due to an unmet condition check (such as ConditionPathExists=, ConditionPathIsSymbolicLink=, … — see below) will be stopped, should it be running. Hence, in many cases it is best to combine BindsTo= with After=. When BindsTo=b.service is used on a.service, this dependency will show as BoundBy=a.service in property listing of b.service. BoundBy= dependency cannot be specified directly. Added in version 201.
PartOf=
Configures dependencies similar to Requires=, but limited to stopping and restarting of units. When systemd stops or restarts the units listed here, the action is propagated to this unit. Note that this is a one-way dependency — changes to this unit do not affect the listed units. When PartOf=b.service is used on a.service, this dependency will show as ConsistsOf=a.service in property listing of b.service. ConsistsOf= dependency cannot be specified directly. Added in version 201.
Upholds=
Configures dependencies similar to Wants=, but as long as this unit is up, all units listed in Upholds= are started whenever found to be inactive or failed, and no job is queued for them. While a Wants= dependency on another unit has a one-time effect when this units started, a Upholds= dependency on it has a continuous effect, constantly restarting the unit if necessary. This is an alternative to the Restart= setting of service units, to ensure they are kept running whatever happens. The restart happens without delay, and usual per-unit rate-limit applies. When Upholds=b.service is used on a.service, this dependency will show as UpheldBy=a.service in the property listing of b.service. Added in version 249.
Conflicts=
A space-separated list of unit names. Configures negative requirement dependencies. If a unit has a Conflicts= setting on another unit, starting the former will stop the latter and vice versa. Note that this setting does not imply an ordering dependency, similarly to the Wants= and Requires= dependencies described above. This means that to ensure that the conflicting unit is stopped before the other unit is started, an After= or Before= dependency must be declared. It doesn't matter which of the two ordering dependencies is used, because stop jobs are always ordered before start jobs, see the discussion in Before=/After= below. If unit A that conflicts with unit B is scheduled to be started at the same time as B, the transaction will either fail (in case both are required parts of the transaction) or be modified to be fixed (in case one or both jobs are not a required part of the transaction). In the latter case, the job that is not required will be removed, or in case both are not required, the unit that conflicts will be started and the unit that is conflicted is stopped. Added in version 201.
Before=, After=
These two settings expect a space-separated list of unit names. They may be specified more than once, in which case dependencies for all listed names are created. Those two settings configure ordering dependencies between units. If unit foo.service contains the setting Before=bar.service and both units are being started, bar.service's start-up is delayed until foo.service has finished starting up. After= is the inverse of Before=, i.e. while Before= ensures that the configured unit is started before the listed unit begins starting up, After= ensures the opposite, that the listed unit is fully started up before the configured unit is started. When two units with an ordering dependency between them are shut down, the inverse of the start-up order is applied. I.e. if a unit is configured with After= on another unit, the former is stopped before the latter if both are shut down. Given two units with any ordering dependency between them, if one unit is shut down and the other is started up, the shutdown is ordered before the start-up. It doesn't matter if the ordering dependency is After= or Before=, in this case. It also doesn't matter which of the two is shut down, as long as one is shut down and the other is started up; the shutdown is ordered before the start-up in all cases. If two units have no ordering dependencies between them, they are shut down or started up simultaneously, and no ordering takes place. It depends on the unit type when precisely a unit has finished starting up. Most importantly, for service units start-up is considered completed for the purpose of Before=/After= when all its configured start-up commands have been invoked and they either failed or reported start-up success. Note that this does includes ExecStartPost= (or ExecStopPost= for the shutdown case). Note that those settings are independent of and orthogonal to the requirement dependencies as configured by Requires=, Wants=, Requisite= , or BindsTo=. It is a common pattern to include a unit name in both the After= and Wants= options, in which case the unit listed will be started before the unit that is configured with these options. Note that Before= dependencies on device units have no effect and are not supported. Devices generally become available as a result of an external hotplug event, and systemd creates the corresponding device unit without delay. Added in version 201.
OnFailure=
A space-separated list of one or more units that are activated when this unit enters the "failed" state. Added in version 201.
OnSuccess=
A space-separated list of one or more units that are activated when this unit enters the "inactive" state. Added in version 249.
PropagatesReloadTo=, ReloadPropagatedFrom=
A space-separated list of one or more units to which reload requests from this unit shall be propagated to, or units from which reload requests shall be propagated to this unit, respectively. Issuing a reload request on a unit will automatically also enqueue reload requests on all units that are linked to it using these two settings. Added in version 201.
PropagatesStopTo=, StopPropagatedFrom=
A space-separated list of one or more units to which stop requests from this unit shall be propagated to, or units from which stop requests shall be propagated to this unit, respectively. Issuing a stop request on a unit will automatically also enqueue stop requests on all units that are linked to it using these two settings. Added in version 249.
JoinsNamespaceOf=
For units that start processes (such as service units), lists one or more other units whose network and/or temporary file namespace to join. If this is specified on a unit (say, a.service has JoinsNamespaceOf=b.service), then the inverse dependency (JoinsNamespaceOf=a.service for b.service) is implied. This only applies to unit types which support the PrivateNetwork=, NetworkNamespacePath=, PrivateIPC=, IPCNamespacePath=, and PrivateTmp= directives (see systemd.exec(5) for details). If a unit that has this setting set is started, its processes will see the same /tmp/, /var/tmp/, IPC namespace and network namespace as one listed unit that is started. If multiple listed units are already started and these do not share their namespace, then it is not defined which namespace is joined. Note that this setting only has an effect if PrivateNetwork=/NetworkNamespacePath=, PrivateIPC=/IPCNamespacePath= and/or PrivateTmp= is enabled for both the unit that joins the namespace and the unit whose namespace is joined. Added in version 209.
RequiresMountsFor=
Takes a space-separated list of absolute paths. Automatically adds dependencies of type Requires= and After= for all mount units required to access the specified path. Mount points marked with noauto are not mounted automatically through local-fs.target, but are still honored for the purposes of this option, i.e. they will be pulled in by this unit. Added in version 201.
OnSuccessJobMode=, OnFailureJobMode=
Takes a value of "fail", "replace", "replace-irreversibly", "isolate", "flush", "ignore-dependencies" or "ignore-requirements". Defaults to "replace". Specifies how the units listed in OnSuccess=/OnFailure= will be enqueued. See systemctl(1)'s - -job-mode= option for details on the possible values. If this is set to "isolate", only a single unit may be listed in OnSuccess=/OnFailure=. Added in version 209.
IgnoreOnIsolate=
Takes a boolean argument. If true, this unit will not be stopped when isolating another unit. Defaults to false for service, target, socket, timer, and path units, and true for slice, scope, device, swap, mount, and automount units. Added in version 201.
StopWhenUnneeded=
Takes a boolean argument. If true, this unit will be stopped when it is no longer used. Note that, in order to minimize the work to be executed, systemd will not stop units by default unless they are conflicting with other units, or the user explicitly requested their shut down. If this option is set, a unit will be automatically cleaned up if no other active unit requires it. Defaults to false. Added in version 201.
RefuseManualStart=, RefuseManualStop=
Takes a boolean argument. If true, this unit can only be activated or deactivated indirectly. In this case, explicit start-up or termination requested by the user is denied, however if it is started or stopped as a dependency of another unit, start-up or termination will succeed. This is mostly a safety feature to ensure that the user does not accidentally activate units that are not intended to be activated explicitly, and not accidentally deactivate units that are not intended to be deactivated. These options default to false. Added in version 201.
AllowIsolate=
Takes a boolean argument. If true, this unit may be used with the systemctl isolate command. Otherwise, this will be refused. It probably is a good idea to leave this disabled except for target units that shall be used similar to runlevels in SysV init systems, just as a precaution to avoid unusable system states. This option defaults to false. Added in version 201.
DefaultDependencies=
Takes a boolean argument. If yes, (the default), a few default dependencies will implicitly be created for the unit. The actual dependencies created depend on the unit type. For example, for service units, these dependencies ensure that the service is started only after basic system initialization is completed and is properly terminated on system shutdown. See the respective man pages for details Generally, only services involved with early boot or late shutdown should set this option to no. It is highly recommended to leave this option enabled for the majority of common units. If set to no, this option does not disable all implicit dependencies, just non-essential ones. Added in version 201.
SurviveFinalKillSignal=
Takes a boolean argument. Defaults to no. If yes, processes belonging to this unit will not be sent the final "SIGTERM" and "SIGKILL" signals during the final phase of the system shutdown process. This functionality replaces the older mechanism that allowed a program to set "argv[0][0] = '@'" as described at systemd and Storage Daemons for the Root File System, which however continues to be supported. Added in version 255.
CollectMode=
Tweaks the "garbage collection" algorithm for this unit. Takes one of inactive or inactive-or-failed. If set to inactive the unit will be unloaded if it is in the inactive state and is not referenced by clients, jobs or other units — however it is not unloaded if it is in the failed state. In failed mode, failed units are not unloaded until the user invoked systemctl reset-failed on them to reset the failed state, or an equivalent command. This behaviour is altered if this option is set to inactive-or-failed: in this case the unit is unloaded even if the unit is in a failed state, and thus an explicitly resetting of the failed state is not necessary. Note that if this mode is used unit results (such as exit codes, exit signals, consumed resources, …) are flushed out immediately after the unit completed, except for what is stored in the logging subsystem. Defaults to inactive. Added in version 236.
FailureAction=, SuccessAction=
Configure the action to take when the unit stops and enters a failed state or inactive state. Takes one of none, reboot, reboot-force, reboot-immediate, poweroff, poweroff-force, poweroff-immediate, exit, exit-force, soft-reboot, soft-reboot-force, kexec, kexec-force, halt, halt-force and halt-immediate. In system mode, all options are allowed. In user mode, only none, exit, exit-force, soft-reboot and soft-reboot-force are allowed. Both options default to none. If none is set, no action will be triggered. reboot causes a reboot following the normal shutdown procedure (i.e. equivalent to systemctl reboot). reboot-force causes a forced reboot which will terminate all processes forcibly but should cause no dirty file systems on reboot (i.e. equivalent to systemctl reboot -f) and reboot-immediate causes immediate execution of the reboot(2) system call, which might result in data loss (i.e. equivalent to systemctl reboot -ff). Similarly, poweroff, poweroff-force, poweroff-immediate, kexec, kexec-force, halt, halt-force and halt-immediate have the effect of powering down the system, executing kexec, and halting the system respectively with similar semantics. exit causes the manager to exit following the normal shutdown procedure, and exit-force causes it terminate without shutting down services. When exit or exit-force is used by default the exit status of the main process of the unit (if this applies) is returned from the service manager. However, this may be overridden with FailureActionExitStatus=/SuccessActionExitStatus=, see below. soft-reboot will trigger a userspace reboot operation. soft-reboot-force does that too, but does not go through the shutdown transaction beforehand. Added in version 236.
FailureActionExitStatus=, SuccessActionExitStatus=
Controls the exit status to propagate back to an invoking container manager (in case of a system service) or service manager (in case of a user manager) when the FailureAction=/SuccessAction= are set to exit or exit-force and the action is triggered. By default the exit status of the main process of the triggering unit (if this applies) is propagated. Takes a value in the range 0…255 or the empty string to request default behaviour. Added in version 240.
JobTimeoutSec=, JobRunningTimeoutSec=
JobTimeoutSec= specifies a timeout for the whole job that starts running when the job is queued. JobRunningTimeoutSec= specifies a timeout that starts running when the queued job is actually started. If either limit is reached, the job will be cancelled, the unit however will not change state or even enter the "failed" mode. Both settings take a time span with the default unit of seconds, but other units may be specified, see systemd.time(5). The default is "infinity" (job timeouts disabled), except for device units where JobRunningTimeoutSec= defaults to DefaultDeviceTimeoutSec=. Note: these timeouts are independent from any unit-specific timeouts (for example, the timeout set with TimeoutStartSec= in service units). The job timeout has no effect on the unit itself. Or in other words: unit-specific timeouts are useful to abort unit state changes, and revert them. The job timeout set with this option however is useful to abort only the job waiting for the unit state to change. Added in version 201.
JobTimeoutAction=, JobTimeoutRebootArgument=
JobTimeoutAction= optionally configures an additional action to take when the timeout is hit, see description of JobTimeoutSec= and JobRunningTimeoutSec= above. It takes the ame values as StartLimitAction=. Defaults to none. JobTimeoutRebootArgument= configures an optional reboot string to pass to the reboot(2) system call. Added in version 240.
StartLimitIntervalSec=interval, StartLimitBurst=burst
Configure unit start rate limiting. Units which are started more than burst times within an interval time span are not permitted to start any more. Use StartLimitIntervalSec= to configure the checking interval and StartLimitBurst= to configure how many starts per interval are allowed. interval is a time span with the default unit of seconds, but other units may be specified, see systemd.time(5). The special value "infinity" can be used to limit the total number of start attempts, even if they happen at large time intervals. Defaults to DefaultStartLimitIntervalSec= in manager configuration file, and may be set to 0 to disable any kind of rate limiting. burst is a number and defaults to DefaultStartLimitBurst= in manager configuration file. These configuration options are particularly useful in conjunction with the service setting Restart= (see systemd.service(5)); however, they apply to all kinds of starts (including manual), not just those triggered by the Restart= logic. Note that units which are configured for Restart=, and which reach the start limit are not attempted to be restarted anymore; however, they may still be restarted manually or from a timer or socket at a later point, after the interval has passed. From that point on, the restart logic is activated again. systemctl reset-failed will cause the restart rate counter for a service to be flushed, which is useful if the administrator wants to manually start a unit and the start limit interferes with that. Rate-limiting is enforced after any unit condition checks are executed, and hence unit activations with failing conditions do not count towards the rate limit. When a unit is unloaded due to the garbage collection logic (see above) its rate limit counters are flushed out too. This means that configuring start rate limiting for a unit that is not referenced continuously has no effect. This setting does not apply to slice, target, device, and scope units, since they are unit types whose activation may either never fail, or may succeed only a single time. Added in version 229.
StartLimitAction=
Configure an additional action to take if the rate limit configured with StartLimitIntervalSec= and StartLimitBurst= is hit. Takes the same values as the FailureAction=/SuccessAction= settings. If none is set, hitting the rate limit will trigger no action except that the start will not be permitted. Defaults to none. Added in version 229.
RebootArgument=
Configure the optional argument for the reboot(2) system call if StartLimitAction= or FailureAction= is a reboot action. This works just like the optional argument to systemctl reboot command. Added in version 229.
SourcePath=
A path to a configuration file this unit has been generated from. This is primarily useful for implementation of generator tools that convert configuration from an external configuration file format into native unit files. This functionality should not be used in normal units. Added in version 201.

Conditions and Asserts Unit files may also include a number of Condition…= and Assert…= settings. Before the unit is started, systemd will verify that the specified conditions and asserts are true. If not, the starting of the unit will be (mostly silently) skipped (in case of conditions), or aborted with an error message (in case of asserts). Failing conditions or asserts will not result in the unit being moved into the "failed" state. The conditions and asserts are checked at the time the queued start job is to be executed. The ordering dependencies are still respected, so other units are still pulled in and ordered as if this unit was successfully activated, and the conditions and asserts are executed the precise moment the unit would normally start and thus can validate system state after the units ordered before completed initialization. Use condition expressions for skipping units that do not apply to the local system, for example because the kernel or runtime environment doesn't require their functionality. If multiple conditions are specified, the unit will be executed if all of them apply (i.e. a logical AND is applied). Condition checks can use a pipe symbol ("|") after the equals sign ("Condition…=|…"), which causes the condition to become a triggering condition. If at least one triggering condition is defined for a unit, then the unit will be started if at least one of the triggering conditions of the unit applies and all of the regular (i.e. non-triggering) conditions apply. If you prefix an argument with the pipe symbol and an exclamation mark, the pipe symbol must be passed first, the exclamation second. If any of these options is assigned the empty string, the list of conditions is reset completely, all previous condition settings (of any kind) will have no effect. The AssertArchitecture=, AssertVirtualization=, … options are similar to conditions but cause the start job to fail (instead of being skipped). The failed check is logged. Units with unmet conditions are considered to be in a clean state and will be garbage collected if they are not referenced. This means that when queried, the condition failure may or may not show up in the state of the unit. Note that neither assertion nor condition expressions result in unit state changes. Also note that both are checked at the time the job is to be executed, i.e. long after depending jobs and it itself were queued. Thus, neither condition nor assertion expressions are suitable for conditionalizing unit dependencies. The condition verb of systemd-analyze(1) can be used to test condition and assert expressions. Except for ConditionPathIsSymbolicLink=, all path checks follow symlinks. ConditionArchitecture=
Check whether the system is running on a specific architecture. Takes one of "x86", "x86-64", "ppc", "ppc-le", "ppc64", "ppc64-le", "ia64", "parisc" , "parisc64", "s390", "s390x", "sparc", "sparc64", "mips", "mips-le", "mips64" , "mips64-le", "alpha", "arm", "arm-be", "arm64", "arm64-be", "sh", "sh64" , "m68k", "tilegx", "cris", "arc", "arc-be", or "native". The architecture is determined from the information returned by uname(2) and is thus subject to personality(2). Note that a Personality= setting in the same unit file has no effect on this condition. A special architecture name "native" is mapped to the architecture the system manager itself is compiled for. The test may be negated by prepending an exclamation mark. Added in version 201.
ConditionFirmware=
Check whether the system's firmware is of a certain type. The following values are possible: Added in version 249.
ConditionVirtualization=

Check whether the system is executed in a virtualized environment and optionally test whether it is a specific implementation. Takes either boolean value to check if being executed in any virtualized environment, or one of "vm" and "container" to test against a generic type of virtualization solution, or one of "qemu", "kvm", "amazon", "zvm", "vmware", "microsoft", "oracle", "powervm", "xen", "bochs", "uml", "bhyve", "qnx", "apple", "sre", "openvz", "lxc", "lxc-libvirt", "systemd-nspawn", "docker", "podman", "rkt", "wsl", "proot", "pouch", "acrn" to test against a specific implementation, or "private-users" to check whether we are running in a user namespace. See systemd-detect-virt(1) for a full list of known virtualization technologies and their identifiers. If multiple virtualization technologies are nested, only the innermost is considered. The test may be negated by prepending an exclamation mark. Added in version 244.

ConditionHost=
ConditionHost= may be used to match against the hostname or machine ID of the host. This either takes a hostname string (optionally with shell style globs) which is tested against the locally set hostname as returned by gethostname(2), or a machine ID formatted as string (see machine-id(5)). The test may be negated by prepending an exclamation mark. Added in version 244.
ConditionKernelCommandLine=
ConditionKernelCommandLine= may be used to check whether a specific kernel command line option is set (or if prefixed with the exclamation mark — unset). The argument must either be a single word, or an assignment (i.e. two words, separated by "="). In the former case the kernel command line is searched for the word appearing as is, or as left hand side of an assignment. In the latter case, the exact assignment is looked for with right and left hand side matching. This operates on the kernel command line communicated to userspace via /proc/cmdline, except when the service manager is invoked as payload of a container manager, in which case the command line of PID 1 is used instead (i.e. /proc/1/cmdline). Added in version 244.
ConditionKernelVersion=
ConditionKernelVersion= may be used to check whether the kernel version (as reported by uname -r) matches a certain expression, or if prefixed with the exclamation mark, does not match. The argument must be a list of (potentially quoted) expressions. Each expression starts with one of "=" or "!=" for string comparisons, ">", "<=", "==", "<", "=", ">" for version comparisons, or "$=", "!$=" for a shell-style glob match. If no operator is specified, "$=" is implied. Note that using the kernel version string is an unreliable way to determine which features are supported by a kernel, because of the widespread practice of backporting drivers, features, and fixes from newer upstream kernels into older versions provided by distributions. Hence, this check is inherently unportable and should not be used for units which may be used on different distributions. Added in version 244.
ConditionCredential=
ConditionCredential= may be used to check whether a credential by the specified name was passed into the service manager. See System and Service Credentials for details about credentials. If used in services for the system service manager this may be used to conditionalize services based on system credentials passed in. If used in services for the per-user service manager this may be used to conditionalize services based on credentials passed into the unit@.service service instance belonging to the user. The argument must be a valid credential name. Added in version 252.
ConditionEnvironment=
ConditionEnvironment= may be used to check whether a specific environment variable is set (or if prefixed with the exclamation mark — unset) in the service manager's environment block. The argument may be a single word, to check if the variable with this name is defined in the environment block, or an assignment ("name=value"), to check if the variable with this exact value is defined. Note that the environment block of the service manager itself is checked, i.e. not any variables defined with Environment= or EnvironmentFile=, as described above. This is particularly useful when the service manager runs inside a containerized environment or as per-user service manager, in order to check for variables passed in by the enclosing container manager or PAM. Added in version 246.
ConditionSecurity=
ConditionSecurity= may be used to check whether the given security technology is enabled on the system. Currently, the following values are recognized: Table 3. Recognized security technologies
ValueDescription
selinuxSELinux MAC
apparmorAppArmor MAC
tomoyoTomoyo MAC
smackSMACK MAC
imaIntegrity Measurement Architecture (IMA)
auditLinux Audit Framework
uefi-securebootUEFI SecureBoot
tpm2Trusted Platform Module 2.0 (TPM2)
cvmConfidential virtual machine (SEV/TDX)
measured-ukiUnified Kernel Image with PCR 11 Measurements, as per systemd-stub(7).
Added in version 255. The test may be negated by prepending an exclamation mark. Added in version 244.
ConditionCapability=
Check whether the given capability exists in the capability bounding set of the service manager (i.e. this does not check whether capability is actually available in the permitted or effective sets, see capabilities(7) for details). Pass a capability name such as "CAP_MKNOD", possibly prefixed with an exclamation mark to negate the check. Added in version 244.
ConditionACPower=
Check whether the system has AC power, or is exclusively battery powered at the time of activation of the unit. This takes a boolean argument. If set to "true", the condition will hold only if at least one AC connector of the system is connected to a power source, or if no AC connectors are known. Conversely, if set to "false", the condition will hold only if there is at least one AC connector known and all AC connectors are disconnected from a power source. Added in version 244.
ConditionNeedsUpdate=
Takes one of /var/ or /etc/ as argument, possibly prefixed with a "!" (to invert the condition). This condition may be used to conditionalize units on whether the specified directory requires an update because /usr/'s modification time is newer than the stamp file .updated in the specified directory. This is useful to implement offline updates of the vendor operating system resources in /usr/ that require updating of /etc/ or /var/ on the next following boot. Units making use of this condition should order themselves before systemd-update-done. service(8), to make sure they run before the stamp file's modification time gets reset indicating a completed update. If the systemd.condition-needs-update= option is specified on the kernel command line (taking a boolean), it will override the result of this condition check, taking precedence over any file modification time checks. If the kernel command line option is used, systemd-update-done.service will not have immediate effect on any following ConditionNeedsUpdate= checks, until the system is rebooted where the kernel command line option is not specified anymore. Note that to make this scheme effective, the timestamp of /usr/ should be explicitly updated after its contents are modified. The kernel will automatically update modification timestamp on a directory only when immediate children of a directory are modified; an modification of nested files will not automatically result in mtime of /usr/ being updated. Also note that if the update method includes a call to execute appropriate post-update steps itself, it should not touch the timestamp of /usr/. In a typical distribution packaging scheme, packages will do any required update steps as part of the installation or upgrade, to make package contents immediately usable. ConditionNeedsUpdate= should be used with other update mechanisms where such an immediate update does not happen. Added in version 244.
ConditionFirstBoot=
Takes a boolean argument. This condition may be used to conditionalize units on whether the system is booting up for the first time. This roughly means that /etc/ was unpopulated when the system started booting (for details, see "First Boot Semantics" in machine-id(5)). First boot is considered finished (this condition will evaluate as false) after the manager has finished the startup phase. This condition may be used to populate /etc/ on the first boot after factory reset, or when a new system instance boots up for the first time. For robustness, units with ConditionFirstBoot=yes should order themselves before first-boot-complete.target and pull in this passive target with Wants=. This ensures that in a case of an aborted first boot, these units will be re-run during the next system startup. If the systemd.condition-first-boot= option is specified on the kernel command line (taking a boolean), it will override the result of this condition check, taking precedence over /etc/machine-id existence checks. Added in version 244.
ConditionPathExists=
Check for the existence of a file. If the specified absolute path name does not exist, the condition will fail. If the absolute path name passed to ConditionPathExists= is prefixed with an exclamation mark ("!"), the test is negated, and the unit is only started if the path does not exist. Added in version 244.
ConditionPathExistsGlob=
ConditionPathExistsGlob= is similar to ConditionPathExists=, but checks for the existence of at least one file or directory matching the specified globbing pattern. Added in version 244.
ConditionPathIsDirectory=
ConditionPathIsDirectory= is similar to ConditionPathExists= but verifies that a certain path exists and is a directory. Added in version 244.
ConditionPathIsSymbolicLink=
ConditionPathIsSymbolicLink= is similar to ConditionPathExists= but verifies that a certain path exists and is a symbolic link. Added in version 244.
ConditionPathIsMountPoint=
ConditionPathIsMountPoint= is similar to ConditionPathExists= but verifies that a certain path exists and is a mount point. Added in version 244.
ConditionPathIsReadWrite=
is similar to ConditionPathExists= but verifies that the underlying file system is readable and writable (i.e. not mounted read-only). Added in version 244.
ConditionPathIsEncrypted=
ConditionPathIsEncrypted= is similar to ConditionPathExists= but verifies that the underlying file system's backing block device is encrypted using dm-crypt/LUKS. Note that this check does not cover ext4 per-directory encryption, and only detects block level encryption. Moreover, if the specified path resides on a file system on top of a loopback block device, only encryption above the loopback device is detected. It is not detected whether the file system backing the loopback block device is encrypted. Added in version 246.
ConditionDirectoryNotEmpty=
ConditionDirectoryNotEmpty= is similar to C onditionPathExists= but verifies that a certain path exists and is a non-empty directory. Added in versio n 244.
ConditionFileNotEmpty=
ConditionFileNotEmpty= is similar to ConditionPathExists= but verifies that a certain path exists and refers to a regular file with a non-zero size. Added in version 244.
ConditionFileIsExecutable=
ConditionFileIsExecutable= is similar to ConditionPathExists= but verifies that a certain path exists, is a regular file, and marked executable. Added in version 244.
ConditionUser=
ConditionUser= takes a numeric "UID", a UNIX user name, or the special value "@system". This condition may be used to check whether the service manager is running as the given user. The special value "@system" can be used to check if the user id is within the system user range. This option is not useful for system services, as the system manager exclusively runs as the root user, and thus the test result is constant. Added in version 244.
ConditionGroup=
ConditionGroup= is similar to ConditionUser= but verifies that the service manager's real or effective group, or any of its auxiliary groups, match the specified group or GID. This setting does not support the special value "@system". Added in version 244.
ConditionControlGroupController=
Check whether given cgroup controllers (e.g. "cpu") are available for use on the system or whether the legacy v1 cgroup or the modern v2 cgroup hierarchy is used. Multiple controllers may be passed with a space separating them; in this case the condition will only pass if all listed controllers are available for use. Controllers unknown to systemd are ignored. Valid controllers are "cpu", "io", "memory", and "pids". Even if available in the kernel, a particular controller may not be available if it was disabled on the kernel command line with cgroup_disable=controller. Alternatively, two special strings "v1" and "v2" may be specified (without any controller names). "v2" will pass if the unified v2 cgroup hierarchy is used, and "v1" will pass if the legacy v1 hierarchy or the hybrid hierarchy are used. Note that legacy or hybrid hierarchies have been deprecated. See systemd(1) for more information. Added in version 244.
ConditionMemory=
Verify that the specified amount of system memory is available to the current system. Takes a memory size in bytes as argument, optionally prefixed with a comparison operator "< "</=", "=" (or "=="), "!=" (or "<> "*gt; "*gt; On bare-metal systems compares the amount of physical memory in the system with the specified size, adhering to the specified comparison operator. In containers compares the amount of memory assigned to the container instead. Added in version 244.
ConditionCPUs=
Verify that the specified number of CPUs is available to the current system. Takes a number of CPUs as argument, optionally prefixed with a comparison operator "< "<=", "=" (or "=="), "!=" (or "<>"), ">=" , ">". Compares the number of CPUs in the CPU affinity mask configured of the service manager itself with the specified number, adhering to the specified comparison operator. On physical systems the number of CPUs in the affinity mask of the service manager usually matches the number of physical CPUs, but in special and virtual environments might differ. In particular, in containers the affinity mask usually matches the number of CPUs assigned to the container and not the physically available ones. Added in version 244.
ConditionCPUFeature=
Verify that a given CPU feature is available via the "CPUID" instruction. This condition only does something on i386 and x86-64 processors. On other processors it is assumed that the CPU does not support the given feature. It checks the leaves "1", "7", "0x80000001", and "0x80000007". Valid values are: "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce", "cx8", "apic", "sep", "mtrr", "pge", "mca", "cmov", "pat", "pse36", "clflush", "mmx", "fxsr", "sse", "sse2", "ht", "pni", "pclmul", "monitor", "ssse3", "fma3", "cx16", "sse4_1", "sse4_2", "movbe", "popcnt", "aes", "xsave", "osxsave", "avx", "f16c", "rdrand" , "bmi1", "avx2", "bmi2", "rdseed", "adx", "sha_ni", "syscall", "rdtscp", "lm" , "lahf_lm", "abm", "constant_tsc". Added in version 248.
ConditionOSRelease=
Verify that a specific "key=value" pair is set in the host's os-release(5). Other than exact string matching (with "=" and "!="), relative comparisons are supported for versioned parameters (e.g. "VERSION_ID"; with "", "=", "==", "<>", ">=", ">"), and shell-style wildcard comparisons ("*", "?", "[]") are supported with the "$=" (match) and "!$=" (non-match). Added in version 249.
ConditionMemoryPressure=, ConditionCPUPressure=, ConditionIOPressure=
Verify that the overall system (memory, CPU or IO) pressure is below or equal to a threshold. This setting takes a threshold value as argument. It can be specified as a simple percentage value, suffixed with "%", in which case the pressure will be measured as an average over the last five minutes before the attempt to start the unit is performed. Alternatively, the average timespan can also be specified using "/" as a separator, for example: "10%/1min". The supported timespans match what the kernel provides, and are limited to "10sec", "1min" and "5min". The "full" PSI will be checked first, and if not found "some" will be checked. For more details, see the documentation on PSI (Pressure Stall Information). Optionally, the threshold value can be prefixed with the slice unit under which the pressure will be checked, followed by a ":". If the slice unit is not specified, the overall system pressure will be measured, instead of a particular cgroup's. Added in version 250.
AssertArchitecture=, AssertVirtualization=, AssertHost=, AssertKernelCommandLine=, AssertKernelVersion=, AssertCredential=, AssertEnvironment=, AssertSecurity=, AssertCapability=, AssertACPower=, AssertNeedsUpdate=, AssertFirstBoot=, AssertPathExists=, AssertPathExistsGlob=, AssertPathIsDirectory=, AssertPathIsSymbolicLink=, AssertPathIsMountPoint=, AssertPathIsReadWrite=, AssertPathIsEncrypted=, AssertDirectoryNotEmpty=, AssertFileNotEmpty=, AssertFileIsExecutable=, AssertUser=, AssertGroup=, AssertControlGroupController=, AssertMemory=, AssertCPUs=, AssertCPUFeature=, AssertOSRelease=, AssertMemoryPressure=, AssertCPUPressure=, AssertIOPressure= Similar to the ConditionArchitecture=, ConditionVirtualization=, …, condition settings described above, these settings add assertion checks to the start-up of the unit. However, unlike the conditions settings, any assertion setting that is not met results in failure of the start job (which means this is logged loudly). Note that hitting a configured assertion does not cause the unit to enter the "failed" state (or in fact result in any state change of the unit), it affects only the job queued for it. Use assertion expressions for units that cannot operate when specific requirements are not met, and when this is something the administrator or user should look into. Added in version 218.


Mapping of unit properties to their inverses Unit settings that create a relationship with a second unit usually show up in properties of both units, for example in systemctl show output. In some cases the name of the property is the same as the name of the configuration setting, but not always. This table lists the properties that are shown on two units which are connected through some dependency, and shows which property on "source" unit corresponds to which property on the "target" unit. Table 4. "Forward" and "reverse" unit properties
"Forward" property"Reverse" propertyWhere used
Before=After=[Unit] section
After=Before=
Requires=RequiredBy=[Unit] section[Install] section
Wants=WantedBy=[Unit] section[Install] section
Upholds=UpheldBy=[Unit] section[Install] section
PartOf=ConsistsOf=[Unit] sectionan automatic property
BindsTo=BoundBy=[Unit] sectionan automatic property
Requisite=RequisiteOf=[Unit] sectionan automatic property
Conflicts=ConflictedBy=[Unit] sectionan automatic property
Triggers=TriggeredBy=Automatic properties, see notes below
PropagatesReloadTo=ReloadPropagatedFrom=[Unit] section
ReloadPropagatedFrom=PropagatesReloadTo=
PropagatesStopTo=StopPropagatedFrom=[Unit] section
StopPropagatedFrom=PropagatesStopTo=
Following=n/aAn automatic property
Note: WantedBy=, RequiredBy=, and UpheldBy= are used in the [Install] section to create symlinks in .wants/, .requires/, and .upholds/ directories. They cannot be used directly as a unit configuration setting. Note: ConsistsOf=, BoundBy=, RequisiteOf=, ConflictedBy= are created implicitly along with their reverses and cannot be specified directly. Note: Triggers= is created implicitly between a socket, path unit, or an automount unit, and the unit they activate. By default a unit with the same name is triggered, but this can be overridden using Sockets=, Service=, and Unit= settings. See systemd.service(5), systemd.socket(5), systemd.path(5), and systemd.automount(5) for details. TriggeredBy= is created implicitly on the triggered unit. Note: Following= is used to group device aliases and points to the "primary" device unit that systemd is using to track device state, usually corresponding to a sysfs path. It does not show up in the "target" unit.
[Install] Section Options Unit files may include an [Install] section, which carries installation information for the unit. This section is not interpreted by systemd(1) during runtime; it is used by the enable and disable commands of the systemctl(1) tool during installation of a unit. Alias=
A space-separated list of additional names this unit shall be installed under. The names listed here must have the same suffix (i.e. type) as the unit filename. This option may be specified more than once, in which case all listed names are used. At installation time, systemctl enable will create symlinks from these names to the unit filename. Note that not all unit types support such alias names, and this setting is not supported for them. Specifically, mount, slice, swap, and automount units do not support aliasing. Added in version 201.
WantedBy=, RequiredBy=, UpheldBy=
This option may be used more than once, or a space-separated list of unit names may be given. A symbolic link is created in the .wants/, .requires/, or .upholds/ directory of each of the listed units when this unit is installed by systemctl enable. This has the effect of a dependency of type Wants=, Requires=, or Upholds= being added from the listed unit to the current unit. See the description of the mentioned dependency types in the [Unit] section for details. In case of template units listing non template units, the listing unit must have DefaultInstance= set, or systemctl enable must be called with an instance name. The instance (default or specified) will be added to the .wants/,.requires/, or .upholds/ list of the listed unit. For example, WantedBy=getty.target in a service getty@.service will result in systemctl enable getty@tty2.service creating a getty.target.wants/getty@tty2.service link to getty@.service. This also applies to listing specific instances of templated units: this specific instance will gain the dependency. A template unit may also list a template unit, in which case a generic dependency will be added where each instance of the listing unit will have a dependency on an instance of the listed template with the same instance value. For example, WantedBy=container@.target in a service monitor@.service will result in systemctl enable monitor@.service creating a container@.target.wants/monitor@.service link to monitor@.service, which applies to all instances of container@.target. Added in version 201.
Also=
Additional units to install/deinstall when this unit is installed/deinstalled. If the user requests installation/deinstallation of a unit with this option configured, systemctl enable and systemctl disable will automatically install/uninstall units listed in this option as well. This option may be used more than once, or a space-separated list of unit names may be given. Added in version 201.
DefaultInstance=
In template unit files, this specifies for which instance the unit shall be enabled if the template is enabled without any explicitly set instance. This option has no effect in non-template unit files. The specified string must be usable as instance identifier. Added in version 215.
The following specifiers are interpreted in the Install section: %a, %b, %B, %g, %G, %H, %i, %j, %l, %m, %n, %N, %o, %p, %u, %U, %v, %w, %W, %%. For their meaning see the next section.
Specifiers Many settings resolve specifiers which may be used to write generic unit files referring to runtime or unit parameters that are replaced when the unit files are loaded. Specifiers must be known and resolvable for the setting to be valid. The following specifiers are understood: Table 5. Specifiers available in unit files
SpecifierMeaningDetails
"%a"ArchitectureA short string identifying the architecture of the local system. A string such as x86, x86-64 or arm64. See the architectures defined for ConditionArchitecture= above for a full list.
"%A"Operating system image versionThe operating system image version identifier of the running system, as read from the IMAGE_VERSION= field of /etc/os-release. If not set, resolves to an empty string. See os-release(5) for more information.
"%b"Boot IDThe boot ID of the running system, formatted as string. See random(4) for more information.
"%B"Operating system build IDThe operating system build identifier of the running system, as read from the BUILD_ID= field of /etc/os-release. If not set, resolves to an empty string. See os-release(5) for more information.
"%C"Cache directory rootThis is either /var/cache (for the system manager) or the path "$XDG_CACHE_HOME" resolves to (for user managers).
"%d"Credentials directoryThis is the value of the "$CREDENTIALS_DIRECTORY" environment variable if available. See section "Credentials" in systemd.exec(5) for more information.
"%E"Configuration directory rootThis is either /etc/ (for the system manager) or the path "$XDG_CONFIG_HOME" resolves to (for user managers).
"%f"Unescaped filenameThis is either the unescaped instance name (if applicable) with / prepended (if applicable), or the unescaped prefix name prepended with /. This implements unescaping according to the rules for escaping absolute file system paths discussed above.
"%g"User groupThis is the name of the group running the service manager instance. In case of the system manager this resolves to "root".
"%G"User GIDThis is the numeric GID of the user running the service manager instance. In case of the system manager this resolves to "0".
"%h"User home directoryThis is the home directory of the user running the service manager instance. In case of the system manager this resolves to "/root". Note that this setting is not influenced by the User= setting configurable in the [Service] section of the service unit.
"%H"Host nameThe hostname of the running system at the point in time the unit configuration is loaded.
"%i"Instance nameFor instantiated units this is the string between the first "@" character and the type suffix. Empty for non-instantiated units.
"%I"Unescaped instance nameSame as "%i", but with escaping undone.
"%j"Final component of the prefixThis is the string between the last "-" and the end of the prefix name. If there is no "-", this is the same as "%p".
"%J"Unescaped final component of the prefixSame as "%j", but with escaping undone.
"%l"Short host nameThe hostname of the running system at the point in time the unit configuration is loaded, truncated at the first dot to remove any domain component.
"%L"Log directory rootThis is either /var/log (for the system manager) or the path $XDG_STATE_HOME resolves to with /log appended (for user managers).
"%m"Machine IDThe machine ID of the running system, formatted as string. See machine-id(5) for more information.
"%M"Operating system image identifierThe operating system image identifier of the running system, as read from the IMAGE_ID= field of /etc/os-release. If not set, resolves to an empty string. See os-release(5) for more information.
"%n"Full unit name
"%N"Full unit nameSame as "%n", but with the type suffix removed.
"%o"Operating system IDThe operating system identifier of the running system, as read from the ID= field of /etc/os-release. See os-release(5) for more information.
"%p"Prefix nameFor instantiated units, this refers to the string before the first "@" character of the unit name. For non-instantiated units, same as "%N".
"%P"Unescaped prefix nameSame as "%p", but with escaping undone.
"%q"Pretty host nameThe pretty hostname of the running system at the point in time the unit configuration is loaded, as read from the PRETTY_HOSTNAME= field of /etc/machine-info. If not set, resolves to the short hostname. See machine-info(5) for more information.
"%s"User shellThis is the shell of the user running the service manager instance.
"%S"State directory rootThis is either /var/lib (for the system manager) or the path $XDG_STATE_HOME resolves to (for user managers).
"%t"Runtime directory rootThis is either /run/ (for the system manager) or the path "$XDG_RUNTIME_DIR" resolves to (for user managers).
"%T"Directory for temporary filesThis is either /tmp or the path "$TMPDIR", "$TEMP" or "$TMP" are set to. (Note that the directory may be specified without a trailing slash.)
"%u"User nameThis is the name of the user running the service manager instance. In case of the system manager this resolves to "root". Note that this setting is not influenced by the User= setting configurable in the [Service] section of the service unit.
"%U"User UIDThis is the numeric UID of the user running the service manager instance. In case of the system manager this resolves to "0". Note that this setting is not influenced by the User= setting configurable in the [Service] section of the service unit.
"%v"Kernel releaseIdentical to uname -r output.
"%V"Directory for larger and persistent temporary filesThis is either /var/tmp or the path "$TMPDIR", "$TEMP" or "$TMP" are set to. (Note that the directory may be specified without a trailing slash.)
"%w"Operating system version IDThe operating system version identifier of the running system, as read from the VERSION_ID= field of ~/etc/os-release If not set, resolves to an empty string. See os-release(5) for more information.
"%W"Operating system variant IDThe operating system variant identifier of the running system, as read from the VARIANT_ID= field of /etc/os-release. If not set, resolves to an empty string. See os-release(5) for more information.
"%y"The path to the fragmentThis is the path where the main part of the unit file is located. For linked unit files, the real path outside of the unit search directories is used. For units that don't have a fragment file, this specifier will raise an error.
"%Y"The directory of the fragmentThis is the directory part of "%y".
"%%"Single percent signUse "%%" in place of "%" to specify a single percent sign.

Examples
Example 1. Allowing units to be enabled The following snippet (highlighted) allows a unit (e.g. foo.service) to be enabled via systemctl enable: [Unit] Description=Foo [Service] ExecStart=/usr/sbin/foo-daemon [Install] WantedBy=multi-user.target After running systemctl enable, a symlink /etc/systemd/system/multi-user.target.wants/foo.service linking to the actual unit will be created. It tells systemd to pull in the unit when starting multi-user.target. The inverse systemctl disable will remove that symlink again.
Example 2. Overriding vendor settings There are two methods of overriding vendor settings in unit files: copying the unit file from /usr/lib/systemd/system to /etc/systemd/system and modifying the chosen settings. Alternatively, one can create a directory named unit.d/ within /etc/systemd/system and place a drop-in file name.conf there that only changes the specific settings one is interested in. Note that multiple such drop-in files are read if present, processed in lexicographic order of their filename. The advantage of the first method is that one easily overrides the complete unit, the vendor unit is not parsed at all anymore. It has the disadvantage that improvements to the unit file by the vendor are not automatically incorporated on updates. The advantage of the second method is that one only overrides the settings one specifically wants, where updates to the unit by the vendor automatically apply. This has the disadvantage that some future updates by the vendor might be incompatible with the local changes. This also applies for user instances of systemd, but with different locations for the unit files. See the section on unit load paths for further details. Suppose there is a vendor-supplied unit /usr/lib/systemd/system/httpd.service with the following contents: [Unit] Description=Some HTTP server After=remote-fs.target sqldb.service Requires=sqldb.service AssertPathExists=/srv/webserver [Service] Type=notify ExecStart=/usr/sbin/some-fancy-httpd-server Nice=5 [Install] WantedBy=multi-user.target Now one wants to change some settings as an administrator: firstly, in the local setup, /srv/webserver might not exist, because the HTTP server is configured to use /srv/www instead. Secondly, the local configuration makes the HTTP server also depend on a memory cache service, memcached.service, that should be pulled in (Requires=) and also be ordered appropriately (After=). Thirdly, in order to harden the service a bit more, the administrator would like to set the PrivateTmp= setting (see systemd.exec(5) for details). And lastly, the administrator would like to reset the niceness of the service to its default value of 0. The first possibility is to copy the unit file to /e tc/systemd/system/httpd.service and change the chosen settings: [Unit] Description=Some HTTP server After=remote-fs.target sqldb.service memcached.service Requires=sqldb.service memcached.service AssertPathExists=/srv/www [Service] Type=notify ExecStart=/usr/sbin/some-fancy-httpd-server Nice=0 PrivateTmp=yes [Install] WantedBy=multi-user.target Alternatively, the administrator could create a drop-in file /etc/systemd/system/httpd.service.d/local.conf with the following contents: [Unit] After=memcached.service Requires=memcached.service # Reset all assertions and then re-add the condition we want AssertPathExists= AssertPathExists=/srv/www [Service] Nice=0 PrivateTmp=yes Note that for drop-in files, if one wants to remove entries from a setting that is parsed as a list (and is not a dependency), such as AssertPathExists= (or e.g. ExecStart= in service units), one needs to first clear the list before re-adding all entries except the one that is to be removed. Dependencies (After=, etc.) cannot be reset to an empty list, so dependencies can only be added in drop-ins. If you want to remove dependencies, you have to override the entire unit.
Example 3. Top level drop-ins with template units Top level per-type drop-ins can be used to change some aspect of all units of a particular type. For example, by creating the / etc/systemd/system/service.d/ directory with a drop-in file, the contents of the drop-in file can be applied to all service units. We can take this further by having the top-level drop-in instantiate a secondary helper unit. Consider for example the following set of units and drop-in files where we install an OnFailure= dependency for all service units. /etc/systemd/system/failure-handler@.service: [Unit] Description=My failure handler for %i [Service] Type=oneshot # Perform some special action for when %i exits unexpectedly. ExecStart=/usr/sbin/myfailurehandler %i We can then add an instance of failure-handler@.service as an OnFailure= dependency for all service units. /etc/systemd/system/service.d/10-all.conf: [Unit] OnFailure=failure-handler@%N.service Now, after running systemctl daemon-reload all services will have acquired an OnFailure= dependency on failure-handler@%N.service. The template instance units will also have gained the dependency which results in the creation of a recursive dependency chain. systemd will try to detect these recursive dependency chains where a template unit directly and recursively depends on itself and will remove such dependencies automatically if it finds them. If systemd doesn't detect the recursive dependency chain, we can break the chain ourselves by disabling the drop-in for the template instance units via a symlink to /dev/null: mkdir /etc/systemd/system/failure-handler@.service.d/ ln -s /dev/null /etc/systemd/system/failure-handler@.service.d/10-all.conf systemctl daemon-reload This ensures that if a failure-handler@.service instance fails it will not trigger an instance named failure-handler@failure-handler.service.
See Also systemd(1), systemctl(1), systemd-system.conf(5), systemd.special(7), systemd.service(5), systemd.socket(5), systemd.device(5), systemd.mount(5), systemd.automount(5), systemd.swap(5), systemd.target(5), systemd.path(5), systemd.timer(5), systemd.scope(5), systemd.slice(5), systemd.time(7), systemd-analyze(1), capabilities(7), systemd.directives(7), uname(1) ======================================================= Slices SYSTEMD.SLICE(5) systemd.slice SYSTEMD.SLICE(5) NAME systemd.slice - Slice unit configuration SYNOPSIS slice.slice DESCRIPTION A unit configuration file whose name ends in ".slice" encodes information about a slice unit. A slice unit is a concept for hierarchically managing resources of a group of processes. This management is performed by creating a node in the Linux Control Group (cgroup) tree. Units that manage processes (primarily scope and service units) may be assigned to a specific slice. For each slice, certain resource limits may be set that apply to all processes of all units contained in that slice. Slices are organized hierarchically in a tree. The name of the slice encodes the location in the tree. The name consists of a dash-separated series of names, which describes the path to the slice from the root slice. The root slice is named -.slice. Example: foo-bar.slice is a slice that is located within foo.slice, which in turn is located in the root slice -.slice. Note that slice units cannot be templated, nor is possible to add multiple names to a slice unit by creating additional symlinks to its unit file. By default, service and scope units are placed in system.slice, virtual machines and containers registered with systemd-machined(8) are found in machine.slice, and user sessions handled by systemd-logind(8) in user.slice. See systemd.special(7) for more information. See systemd.unit(5) for the common options of all unit configuration files. The common configuration items are configured in the generic [Unit] and [Install] sections. The slice specific configuration options are configured in the [Slice] section. Currently, only generic resource control settings as described in systemd.resource-control(5) are allowed. See the New Control Group Interfaces[1] for an introduction on how to make use of slice units from programs. AUTOMATIC DEPENDENCIES Implicit Dependencies The following dependencies are implicitly added: • Slice units automatically gain dependencies of type After= and Requires= on their immediate parent slice unit. Default Dependencies The following dependencies are added unless DefaultDependencies=no is set: • Slice units will automatically have dependencies of type Conflicts= and Before= on shutdown.target. These ensure that slice units are removed prior to system shutdown. Only slice units involved with late system shutdown should disable DefaultDependencies= option. SEE ALSO systemd(1), systemd.unit(5), systemd.resource-control(5), systemd.service(5), systemd.scope(5), systemd.special(7), systemd.directives(7) NOTES 1. New Control Group Interfaces https://www.freedesktop.org/wiki/Software/systemd/ControlGroupInterface/ systemd 249 SYSTEMD.SLICE(5) ======================================================= Swap SYSTEMD.SWAP(5) systemd.swap SYSTEMD.SWAP(5) NAME systemd.swap - Swap unit configuration SYNOPSIS swap.swap DESCRIPTION A unit configuration file whose name ends in ".swap" encodes information about a swap device or file for memory paging controlled and supervised by systemd. This man page lists the configuration options specific to this unit type. See systemd.unit(5) for the common options of all unit configuration files. The common configuration items are configured in the generic [Unit] and [Install] sections. The swap specific configuration options are configured in the [Swap] section. Additional options are listed in systemd.exec(5), which define the execution environment the swapon(8) program is executed in, in systemd.kill(5), which define the way these processes are terminated, and in systemd.resource-control(5), which configure resource control settings for these processes of the unit. Swap units must be named after the devices or files they control. Example: the swap device /dev/sda5 must be configured in a unit file dev-sda5.swap. For details about the escaping logic used to convert a file system path to a unit name, see systemd.unit(5). Note that swap units cannot be templated, nor is possible to add multiple names to a swap unit by creating additional symlinks to it. Note that swap support on Linux is privileged, swap units are hence only available in the system service manager (and root's user service manager), but not in unprivileged user's service manager. AUTOMATIC DEPENDENCIES Implicit Dependencies The following dependencies are implicitly added: • All swap units automatically get the BindsTo= and After= dependencies on the device units or the mount units of the files they are activated from. Additional implicit dependencies may be added as result of execution and resource control parameters as documented in systemd.exec(5) and systemd.resource-control(5). Default Dependencies The following dependencies are added unless DefaultDependencies=no is set: • Swap units automatically acquire a Conflicts= and a Before= dependency on umount.target so that they are deactivated at shutdown as well as a Before=swap.target dependency. FSTAB Swap units may either be configured via unit files, or via /etc/fstab (see fstab(5) for details). Swaps listed in /etc/fstab will be converted into native units dynamically at boot and when the configuration of the system manager is reloaded. See systemd-fstab- generator(8) for details about the conversion. If a swap device or file is configured in both /etc/fstab and a unit file, the configuration in the latter takes precedence. When reading /etc/fstab, a few special options are understood by systemd which influence how dependencies are created for swap units. noauto, auto With noauto, the swap unit will not be added as a dependency for swap.target. This means that it will not be activated automatically during boot, unless it is pulled in by some other unit. The auto option has the opposite meaning and is the default. nofail With nofail, the swap unit will be only wanted, not required by swap.target. This means that the boot will continue even if this swap device is not activated successfully. x-systemd.device-timeout= Configure how long systemd should wait for a device to show up before giving up on an entry from /etc/fstab. Specify a time in seconds or explicitly append a unit such as "s", "min", "h", "ms". Note that this option can only be used in /etc/fstab, and will be ignored when part of the Options= setting in a unit file. x-systemd.makefs The swap structure will be initialized on the device. If the device is not "empty", i.e. it contains any signature, the operation will be skipped. It is hence expected that this option remains set even after the device has been initialized. Note that this option can only be used in /etc/fstab, and will be ignored when part of the Options= setting in a unit file. See systemd-mkswap@.service(8) and the discussion of wipefs(8) in systemd.mount(5). OPTIONS Swap unit files must include a [Swap] section, which carries information about the swap device it supervises. A number of options that may be used in this section are shared with other unit types. These options are documented in systemd.exec(5) and systemd.kill(5). The options specific to the [Swap] section of swap units are the following: What= Takes an absolute path of a device node or file to use for paging. See swapon(8) for details. If this refers to a device node, a dependency on the respective device unit is automatically created. (See systemd.device(5) for more information.) If this refers to a file, a dependency on the respective mount unit is automatically created. (See systemd.mount(5) for more information.) This option is mandatory. Note that the usual specifier expansion is applied to this setting, literal percent characters should hence be written as "%%". Priority= Swap priority to use when activating the swap device or file. This takes an integer. This setting is optional and ignored when the priority is set by pri= in the Options= key. Options= May contain an option string for the swap device. This may be used for controlling discard options among other functionality, if the swap backing device supports the discard or trim operation. (See swapon(8) for more information.) Note that the usual specifier expansion is applied to this setting, literal percent characters should hence be written as "%%". TimeoutSec= Configures the time to wait for the swapon command to finish. If a command does not exit within the configured time, the swap will be considered failed and be shut down again. All commands still running will be terminated forcibly via SIGTERM, and after another delay of this time with SIGKILL. (See KillMode= in systemd.kill(5).) Takes a unit-less value in seconds, or a time span value such as "5min 20s". Pass "0" to disable the timeout logic. Defaults to DefaultTimeoutStartSec= from the manager configuration file (see systemd-system.conf(5)). Check systemd.exec(5) and systemd.kill(5) for more settings. SEE ALSO systemd(1), systemctl(1), systemd-system.conf(5), systemd.unit(5), systemd.exec(5), systemd.kill(5), systemd.resource-control(5), systemd.device(5), systemd.mount(5), swapon(8), systemd-fstab- generator(8), systemd.directives(7) systemd 249 SYSTEMD.SWAP(5) ======================================================= Paths SYSTEMD.PATH(5) systemd.path SYSTEMD.PATH(5) NAME systemd.path - Path unit configuration SYNOPSIS path.path DESCRIPTION A unit configuration file whose name ends in ".path" encodes information about a path monitored by systemd, for path-based activation. This man page lists the configuration options specific to this unit type. See systemd.unit(5) for the common options of all unit configuration files. The common configuration items are configured in the generic [Unit] and [Install] sections. The path specific configuration options are configured in the [Path] section. For each path file, a matching unit file must exist, describing the unit to activate when the path changes. By default, a service by the same name as the path (except for the suffix) is activated. Example: a path file foo.path activates a matching service foo.service. The unit to activate may be controlled by Unit= (see below). Internally, path units use the inotify(7) API to monitor file systems. Due to that, it suffers by the same limitations as inotify, and for example cannot be used to monitor files or directories changed by other machines on remote NFS file systems. When a service unit triggered by a path unit terminates (regardless whether it exited successfully or failed), monitored paths are checked immediately again, and the service accordingly restarted instantly. As protection against busy looping in this trigger/start cycle, a start rate limit is enforced on the service unit, see StartLimitIntervalSec= and StartLimitBurst= in systemd.unit(5). Unlike other service failures, the error condition that the start rate limit is hit is propagated from the service unit to the path unit and causes the path unit to fail as well, thus ending the loop. AUTOMATIC DEPENDENCIES Implicit Dependencies The following dependencies are implicitly added: • If a path unit is beneath another mount unit in the file system hierarchy, both a requirement and an ordering dependency between both units are created automatically. • An implicit Before= dependency is added between a path unit and the unit it is supposed to activate. Default Dependencies The following dependencies are added unless DefaultDependencies=no is set: • Path units will automatically have dependencies of type Before= on paths.target, dependencies of type After= and Requires= on sysinit.target, and have dependencies of type Conflicts= and Before= on shutdown.target. These ensure that path units are terminated cleanly prior to system shutdown. Only path units involved with early boot or late system shutdown should disable DefaultDependencies= option. OPTIONS Path files must include a [Path] section, which carries information about the path(s) it monitors. The options specific to the [Path] section of path units are the following: PathExists=, PathExistsGlob=, PathChanged=, PathModified=, DirectoryNotEmpty= Defines paths to monitor for certain changes: PathExists= may be used to watch the mere existence of a file or directory. If the file specified exists, the configured unit is activated. PathExistsGlob= works similar, but checks for the existence of at least one file matching the globbing pattern specified. PathChanged= may be used to watch a file or directory and activate the configured unit whenever it changes. It is not activated on every write to the watched file but it is activated if the file which was open for writing gets closed. PathModified= is similar, but additionally it is activated also on simple writes to the watched file. DirectoryNotEmpty= may be used to watch a directory and activate the configured unit whenever it contains at least one file. The arguments of these directives must be absolute file system paths. Multiple directives may be combined, of the same and of different types, to watch multiple paths. If the empty string is assigned to any of these options, the list of paths to watch is reset, and any prior assignments of these options will not have any effect. If a path already exists (in case of PathExists= and PathExistsGlob=) or a directory already is not empty (in case of DirectoryNotEmpty=) at the time the path unit is activated, then the configured unit is immediately activated as well. Something similar does not apply to PathChanged= and PathModified=. If the path itself or any of the containing directories are not accessible, systemd will watch for permission changes and notice that conditions are satisfied when permissions allow that. Unit= The unit to activate when any of the configured paths changes. The argument is a unit name, whose suffix is not ".path". If not specified, this value defaults to a service that has the same name as the path unit, except for the suffix. (See above.) It is recommended that the unit name that is activated and the unit name of the path unit are named identical, except for the suffix. MakeDirectory= Takes a boolean argument. If true, the directories to watch are created before watching. This option is ignored for PathExists= settings. Defaults to false. DirectoryMode= If MakeDirectory= is enabled, use the mode specified here to create the directories in question. Takes an access mode in octal notation. Defaults to 0755. SEE ALSO systemd(1), systemctl(1), systemd.unit(5), systemd.service(5), inotify(7), systemd.directives(7) systemd 249 SYSTEMD.PATH(5) ======================================================= Socket SYSTEMD.SOCKET(5) systemd.socket SYSTEMD.SOCKET(5) NAME systemd.socket - Socket unit configuration SYNOPSIS socket.socket DESCRIPTION A unit configuration file whose name ends in ".socket" encodes information about an IPC or network socket or a file system FIFO controlled and supervised by systemd, for socket-based activation. This man page lists the configuration options specific to this unit type. See systemd.unit(5) for the common options of all unit configuration files. The common configuration items are configured in the generic [Unit] and [Install] sections. The socket specific configuration options are configured in the [Socket] section. Additional options are listed in systemd.exec(5), which define the execution environment the ExecStartPre=, ExecStartPost=, ExecStopPre= and ExecStopPost= commands are executed in, and in systemd.kill(5), which define the way the processes are terminated, and in systemd.resource-control(5), which configure resource control settings for the processes of the socket. For each socket unit, a matching service unit must exist, describing the service to start on incoming traffic on the socket (see systemd.service(5) for more information about .service units). The name of the .service unit is by default the same as the name of the .socket unit, but can be altered with the Service= option described below. Depending on the setting of the Accept= option described below, this .service unit must either be named like the .socket unit, but with the suffix replaced, unless overridden with Service=; or it must be a template unit named the same way. Example: a socket file foo.socket needs a matching service foo.service if Accept=no is set. If Accept=yes is set, a service template foo@.service must exist from which services are instantiated for each incoming connection. No implicit WantedBy= or RequiredBy= dependency from the socket to the service is added. This means that the service may be started without the socket, in which case it must be able to open sockets by itself. To prevent this, an explicit Requires= dependency may be added. Socket units may be used to implement on-demand starting of services, as well as parallelized starting of services. See the blog stories linked at the end for an introduction. Note that the daemon software configured for socket activation with socket units needs to be able to accept sockets from systemd, either via systemd's native socket passing interface (see sd_listen_fds(3) for details about the precise protocol used and the order in which the file descriptors are passed) or via traditional inetd(8)-style socket passing (i.e. sockets passed in via standard input and output, using StandardInput=socket in the service file). All network sockets allocated through .socket units are allocated in the host's network namespace (see network_namespaces(7)). This does not mean however that the service activated by a configured socket unit has to be part of the host's network namespace as well. It is supported and even good practice to run services in their own network namespace (for example through PrivateNetwork=, see systemd.exec(5)), receiving only the sockets configured through socket-activation from the host's namespace. In such a set-up communication within the host's network namespace is only permitted through the activation sockets passed in while all sockets allocated from the service code itself will be associated with the service's own namespace, and thus possibly subject to a restrictive configuration. AUTOMATIC DEPENDENCIES Implicit Dependencies The following dependencies are implicitly added: • Socket units automatically gain a Before= dependency on the service units they activate. • Socket units referring to file system paths (such as AF_UNIX sockets or FIFOs) implicitly gain Requires= and After= dependencies on all mount units necessary to access those paths. • Socket units using the BindToDevice= setting automatically gain a BindsTo= and After= dependency on the device unit encapsulating the specified network interface. Additional implicit dependencies may be added as result of execution and resource control parameters as documented in systemd.exec(5) and systemd.resource-control(5). Default Dependencies The following dependencies are added unless DefaultDependencies=no is set: • Socket units automatically gain a Before= dependency on sockets.target. • Socket units automatically gain a pair of After= and Requires= dependency on sysinit.target, and a pair of Before= and Conflicts= dependencies on shutdown.target. These dependencies ensure that the socket unit is started before normal services at boot, and is stopped on shutdown. Only sockets involved with early boot or late system shutdown should disable DefaultDependencies= option. OPTIONS Socket files must include a [Socket] section, which carries information about the socket or FIFO it supervises. A number of options that may be used in this section are shared with other unit types. These options are documented in systemd.exec(5) and systemd.kill(5). The options specific to the [Socket] section of socket units are the following: ListenStream=, ListenDatagram=, ListenSequentialPacket= Specifies an address to listen on for a stream (SOCK_STREAM), datagram (SOCK_DGRAM), or sequential packet (SOCK_SEQPACKET) socket, respectively. The address can be written in various formats: If the address starts with a slash ("/"), it is read as file system socket in the AF_UNIX socket family. If the address starts with an at symbol ("@"), it is read as abstract namespace socket in the AF_UNIX family. The "@" is replaced with a NUL character before binding. For details, see unix(7). If the address string is a single number, it is read as port number to listen on via IPv6. Depending on the value of BindIPv6Only= (see below) this might result in the service being available via both IPv6 and IPv4 (default) or just via IPv6. If the address string is a string in the format "v.w.x.y:z", it is interpreted as IPv4 address v.w.x.y and port z. If the address string is a string in the format "[x]:y", it is interpreted as IPv6 address x and port y. An optional interface scope (interface name or number) may be specified after a "%" symbol: "[x]:y%dev". Interface scopes are only useful with link-local addresses, because the kernel ignores them in other cases. Note that if an address is specified as IPv6, it might still make the service available via IPv4 too, depending on the BindIPv6Only= setting (see below). If the address string is a string in the format "vsock:x:y", it is read as CID x on a port y address in the AF_VSOCK family. The CID is a unique 32-bit integer identifier in AF_VSOCK analogous to an IP address. Specifying the CID is optional, and may be set to the empty string. Note that SOCK_SEQPACKET (i.e. ListenSequentialPacket=) is only available for AF_UNIX sockets. SOCK_STREAM (i.e. ListenStream=) when used for IP sockets refers to TCP sockets, SOCK_DGRAM (i.e. ListenDatagram=) to UDP. These options may be specified more than once, in which case incoming traffic on any of the sockets will trigger service activation, and all listed sockets will be passed to the service, regardless of whether there is incoming traffic on them or not. If the empty string is assigned to any of these options, the list of addresses to listen on is reset, all prior uses of any of these options will have no effect. It is also possible to have more than one socket unit for the same service when using Service=, and the service will receive all the sockets configured in all the socket units. Sockets configured in one unit are passed in the order of configuration, but no ordering between socket units is specified. If an IP address is used here, it is often desirable to listen on it before the interface it is configured on is up and running, and even regardless of whether it will be up and running at any point. To deal with this, it is recommended to set the FreeBind= option described below. ListenFIFO= Specifies a file system FIFO (see fifo(7) for details) to listen on. This expects an absolute file system path as argument. Behavior otherwise is very similar to the ListenDatagram= directive above. ListenSpecial= Specifies a special file in the file system to listen on. This expects an absolute file system path as argument. Behavior otherwise is very similar to the ListenFIFO= directive above. Use this to open character device nodes as well as special files in /proc/ and /sys/. ListenNetlink= Specifies a Netlink family to create a socket for to listen on. This expects a short string referring to the AF_NETLINK family name (such as audit or kobject-uevent) as argument, optionally suffixed by a whitespace followed by a multicast group integer. Behavior otherwise is very similar to the ListenDatagram= directive above. ListenMessageQueue= Specifies a POSIX message queue name to listen on (see mq_overview(7) for details). This expects a valid message queue name (i.e. beginning with "/"). Behavior otherwise is very similar to the ListenFIFO= directive above. On Linux message queue descriptors are actually file descriptors and can be inherited between processes. ListenUSBFunction= Specifies a USB FunctionFS[1] endpoints location to listen on, for implementation of USB gadget functions. This expects an absolute file system path of a FunctionFS mount point as the argument. Behavior otherwise is very similar to the ListenFIFO= directive above. Use this to open the FunctionFS endpoint ep0. When using this option, the activated service has to have the USBFunctionDescriptors= and USBFunctionStrings= options set. SocketProtocol= Takes one of udplite or sctp. The socket will use the UDP-Lite (IPPROTO_UDPLITE) or SCTP (IPPROTO_SCTP) protocol, respectively. BindIPv6Only= Takes one of default, both or ipv6-only. Controls the IPV6_V6ONLY socket option (see ipv6(7) for details). If both, IPv6 sockets bound will be accessible via both IPv4 and IPv6. If ipv6-only, they will be accessible via IPv6 only. If default (which is the default, surprise!), the system wide default setting is used, as controlled by /proc/sys/net/ipv6/bindv6only, which in turn defaults to the equivalent of both. Backlog= Takes an unsigned integer argument. Specifies the number of connections to queue that have not been accepted yet. This setting matters only for stream and sequential packet sockets. See listen(2) for details. Defaults to SOMAXCONN (128). BindToDevice= Specifies a network interface name to bind this socket to. If set, traffic will only be accepted from the specified network interfaces. This controls the SO_BINDTODEVICE socket option (see socket(7) for details). If this option is used, an implicit dependency from this socket unit on the network interface device unit is created (see systemd.device(5)). Note that setting this parameter might result in additional dependencies to be added to the unit (see above). SocketUser=, SocketGroup= Takes a UNIX user/group name. When specified, all AF_UNIX sockets and FIFO nodes in the file system are owned by the specified user and group. If unset (the default), the nodes are owned by the root user/group (if run in system context) or the invoking user/group (if run in user context). If only a user is specified but no group, then the group is derived from the user's default group. SocketMode= If listening on a file system socket or FIFO, this option specifies the file system access mode used when creating the file node. Takes an access mode in octal notation. Defaults to 0666. DirectoryMode= If listening on a file system socket or FIFO, the parent directories are automatically created if needed. This option specifies the file system access mode used when creating these directories. Takes an access mode in octal notation. Defaults to 0755. Accept= Takes a boolean argument. If yes, a service instance is spawned for each incoming connection and only the connection socket is passed to it. If no, all listening sockets themselves are passed to the started service unit, and only one service unit is spawned for all connections (also see above). This value is ignored for datagram sockets and FIFOs where a single service unit unconditionally handles all incoming traffic. Defaults to no. For performance reasons, it is recommended to write new daemons only in a way that is suitable for Accept=no. A daemon listening on an AF_UNIX socket may, but does not need to, call close(2) on the received socket before exiting. However, it must not unlink the socket from a file system. It should not invoke shutdown(2) on sockets it got with Accept=no, but it may do so for sockets it got with Accept=yes set. Setting Accept=yes is mostly useful to allow daemons designed for usage with inetd(8) to work unmodified with systemd socket activation. For IPv4 and IPv6 connections, the REMOTE_ADDR environment variable will contain the remote IP address, and REMOTE_PORT will contain the remote port. This is the same as the format used by CGI. For SOCK_RAW, the port is the IP protocol. Writable= Takes a boolean argument. May only be used in conjunction with ListenSpecial=. If true, the specified special file is opened in read-write mode, if false, in read-only mode. Defaults to false. FlushPending= Takes a boolean argument. May only be used when Accept=no. If yes, the socket's buffers are cleared after the triggered service exited. This causes any pending data to be flushed and any pending incoming connections to be rejected. If no, the socket's buffers won't be cleared, permitting the service to handle any pending connections after restart, which is the usually expected behaviour. Defaults to no. MaxConnections= The maximum number of connections to simultaneously run services instances for, when Accept=yes is set. If more concurrent connections are coming in, they will be refused until at least one existing connection is terminated. This setting has no effect on sockets configured with Accept=no or datagram sockets. Defaults to 64. MaxConnectionsPerSource= The maximum number of connections for a service per source IP address. This is very similar to the MaxConnections= directive above. Disabled by default. KeepAlive= Takes a boolean argument. If true, the TCP/IP stack will send a keep alive message after 2h (depending on the configuration of /proc/sys/net/ipv4/tcp_keepalive_time) for all TCP streams accepted on this socket. This controls the SO_KEEPALIVE socket option (see socket(7) and the TCP Keepalive HOWTO[2] for details.) Defaults to false. KeepAliveTimeSec= Takes time (in seconds) as argument. The connection needs to remain idle before TCP starts sending keepalive probes. This controls the TCP_KEEPIDLE socket option (see socket(7) and the TCP Keepalive HOWTO[2] for details.) Defaults value is 7200 seconds (2 hours). KeepAliveIntervalSec= Takes time (in seconds) as argument between individual keepalive probes, if the socket option SO_KEEPALIVE has been set on this socket. This controls the TCP_KEEPINTVL socket option (see socket(7) and the TCP Keepalive HOWTO[2] for details.) Defaults value is 75 seconds. KeepAliveProbes= Takes an integer as argument. It is the number of unacknowledged probes to send before considering the connection dead and notifying the application layer. This controls the TCP_KEEPCNT socket option (see socket(7) and the TCP Keepalive HOWTO[2] for details.) Defaults value is 9. NoDelay= Takes a boolean argument. TCP Nagle's algorithm works by combining a number of small outgoing messages, and sending them all at once. This controls the TCP_NODELAY socket option (see tcp(7)). Defaults to false. Priority= Takes an integer argument controlling the priority for all traffic sent from this socket. This controls the SO_PRIORITY socket option (see socket(7) for details.). DeferAcceptSec= Takes time (in seconds) as argument. If set, the listening process will be awakened only when data arrives on the socket, and not immediately when connection is established. When this option is set, the TCP_DEFER_ACCEPT socket option will be used (see tcp(7)), and the kernel will ignore initial ACK packets without any data. The argument specifies the approximate amount of time the kernel should wait for incoming data before falling back to the normal behavior of honoring empty ACK packets. This option is beneficial for protocols where the client sends the data first (e.g. HTTP, in contrast to SMTP), because the server process will not be woken up unnecessarily before it can take any action. If the client also uses the TCP_DEFER_ACCEPT option, the latency of the initial connection may be reduced, because the kernel will send data in the final packet establishing the connection (the third packet in the "three-way handshake"). Disabled by default. ReceiveBuffer=, SendBuffer= Takes an integer argument controlling the receive or send buffer sizes of this socket, respectively. This controls the SO_RCVBUF and SO_SNDBUF socket options (see socket(7) for details.). The usual suffixes K, M, G are supported and are understood to the base of 1024. IPTOS= Takes an integer argument controlling the IP Type-Of-Service field for packets generated from this socket. This controls the IP_TOS socket option (see ip(7) for details.). Either a numeric string or one of low-delay, throughput, reliability or low-cost may be specified. IPTTL= Takes an integer argument controlling the IPv4 Time-To-Live/IPv6 Hop-Count field for packets generated from this socket. This sets the IP_TTL/IPV6_UNICAST_HOPS socket options (see ip(7) and ipv6(7) for details.) Mark= Takes an integer value. Controls the firewall mark of packets generated by this socket. This can be used in the firewall logic to filter packets from this socket. This sets the SO_MARK socket option. See iptables(8) for details. ReusePort= Takes a boolean value. If true, allows multiple bind(2)s to this TCP or UDP port. This controls the SO_REUSEPORT socket option. See socket(7) for details. SmackLabel=, SmackLabelIPIn=, SmackLabelIPOut= Takes a string value. Controls the extended attributes "security.SMACK64", "security.SMACK64IPIN" and "security.SMACK64IPOUT", respectively, i.e. the security label of the FIFO, or the security label for the incoming or outgoing connections of the socket, respectively. See Smack.txt[3] for details. SELinuxContextFromNet= Takes a boolean argument. When true, systemd will attempt to figure out the SELinux label used for the instantiated service from the information handed by the peer over the network. Note that only the security level is used from the information provided by the peer. Other parts of the resulting SELinux context originate from either the target binary that is effectively triggered by socket unit or from the value of the SELinuxContext= option. This configuration option applies only when activated service is passed in single socket file descriptor, i.e. service instances that have standard input connected to a socket or services triggered by exactly one socket unit. Also note that this option is useful only when MLS/MCS SELinux policy is deployed. Defaults to "false". PipeSize= Takes a size in bytes. Controls the pipe buffer size of FIFOs configured in this socket unit. See fcntl(2) for details. The usual suffixes K, M, G are supported and are understood to the base of 1024. MessageQueueMaxMessages=, MessageQueueMessageSize= These two settings take integer values and control the mq_maxmsg field or the mq_msgsize field, respectively, when creating the message queue. Note that either none or both of these variables need to be set. See mq_setattr(3) for details. FreeBind= Takes a boolean value. Controls whether the socket can be bound to non-local IP addresses. This is useful to configure sockets listening on specific IP addresses before those IP addresses are successfully configured on a network interface. This sets the IP_FREEBIND/IPV6_FREEBIND socket option. For robustness reasons it is recommended to use this option whenever you bind a socket to a specific IP address. Defaults to false. Transparent= Takes a boolean value. Controls the IP_TRANSPARENT/IPV6_TRANSPARENT socket option. Defaults to false. Broadcast= Takes a boolean value. This controls the SO_BROADCAST socket option, which allows broadcast datagrams to be sent from this socket. Defaults to false. PassCredentials= Takes a boolean value. This controls the SO_PASSCRED socket option, which allows AF_UNIX sockets to receive the credentials of the sending process in an ancillary message. Defaults to false. PassSecurity= Takes a boolean value. This controls the SO_PASSSEC socket option, which allows AF_UNIX sockets to receive the security context of the sending process in an ancillary message. Defaults to false. PassPacketInfo= Takes a boolean value. This controls the IP_PKTINFO, IPV6_RECVPKTINFO, NETLINK_PKTINFO or PACKET_AUXDATA socket options, which enable reception of additional per-packet metadata as ancillary message, on AF_INET, AF_INET6, AF_UNIX and AF_PACKET sockets. Defaults to false. Timestamping= Takes one of "off", "us" (alias: "usec", "µs") or "ns" (alias: "nsec"). This controls the SO_TIMESTAMP or SO_TIMESTAMPNS socket options, and enables whether ingress network traffic shall carry timestamping metadata. Defaults to off. TCPCongestion= Takes a string value. Controls the TCP congestion algorithm used by this socket. Should be one of "westwood", "veno", "cubic", "lp" or any other available algorithm supported by the IP stack. This setting applies only to stream sockets. ExecStartPre=, ExecStartPost= Takes one or more command lines, which are executed before or after the listening sockets/FIFOs are created and bound, respectively. The first token of the command line must be an absolute filename, then followed by arguments for the process. Multiple command lines may be specified following the same scheme as used for ExecStartPre= of service unit files. ExecStopPre=, ExecStopPost= Additional commands that are executed before or after the listening sockets/FIFOs are closed and removed, respectively. Multiple command lines may be specified following the same scheme as used for ExecStartPre= of service unit files. TimeoutSec= Configures the time to wait for the commands specified in ExecStartPre=, ExecStartPost=, ExecStopPre= and ExecStopPost= to finish. If a command does not exit within the configured time, the socket will be considered failed and be shut down again. All commands still running will be terminated forcibly via SIGTERM, and after another delay of this time with SIGKILL. (See KillMode= in systemd.kill(5).) Takes a unit-less value in seconds, or a time span value such as "5min 20s". Pass "0" to disable the timeout logic. Defaults to DefaultTimeoutStartSec= from the manager configuration file (see systemd-system.conf(5)). Service= Specifies the service unit name to activate on incoming traffic. This setting is only allowed for sockets with Accept=no. It defaults to the service that bears the same name as the socket (with the suffix replaced). In most cases, it should not be necessary to use this option. Note that setting this parameter might result in additional dependencies to be added to the unit (see above). RemoveOnStop= Takes a boolean argument. If enabled, any file nodes created by this socket unit are removed when it is stopped. This applies to AF_UNIX sockets in the file system, POSIX message queues, FIFOs, as well as any symlinks to them configured with Symlinks=. Normally, it should not be necessary to use this option, and is not recommended as services might continue to run after the socket unit has been terminated and it should still be possible to communicate with them via their file system node. Defaults to off. Symlinks= Takes a list of file system paths. The specified paths will be created as symlinks to the AF_UNIX socket path or FIFO path of this socket unit. If this setting is used, only one AF_UNIX socket in the file system or one FIFO may be configured for the socket unit. Use this option to manage one or more symlinked alias names for a socket, binding their lifecycle together. Note that if creation of a symlink fails this is not considered fatal for the socket unit, and the socket unit may still start. If an empty string is assigned, the list of paths is reset. Defaults to an empty list. FileDescriptorName= Assigns a name to all file descriptors this socket unit encapsulates. This is useful to help activated services identify specific file descriptors, if multiple fds are passed. Services may use the sd_listen_fds_with_names(3) call to acquire the names configured for the received file descriptors. Names may contain any ASCII character, but must exclude control characters and ":", and must be at most 255 characters in length. If this setting is not used, the file descriptor name defaults to the name of the socket unit, including its .socket suffix. TriggerLimitIntervalSec=, TriggerLimitBurst= Configures a limit on how often this socket unit my be activated within a specific time interval. The TriggerLimitIntervalSec= may be used to configure the length of the time interval in the usual time units "us", "ms", "s", "min", "h", ... and defaults to 2s (See systemd.time(7) for details on the various time units understood). The TriggerLimitBurst= setting takes a positive integer value and specifies the number of permitted activations per time interval, and defaults to 200 for Accept=yes sockets (thus by default permitting 200 activations per 2s), and 20 otherwise (20 activations per 2s). Set either to 0 to disable any form of trigger rate limiting. If the limit is hit, the socket unit is placed into a failure mode, and will not be connectible anymore until restarted. Note that this limit is enforced before the service activation is enqueued. Check systemd.exec(5) and systemd.kill(5) for more settings. SEE ALSO systemd(1), systemctl(1), systemd-system.conf(5), systemd.unit(5), systemd.exec(5), systemd.kill(5), systemd.resource-control(5), systemd.service(5), systemd.directives(7), sd_listen_fds(3), sd_listen_fds_with_names(3) For more extensive descriptions see the "systemd for Developers" series: Socket Activation[4], Socket Activation, part II[5], Converting inetd Services[6], Socket Activated Internet Services and OS Containers[7]. NOTES 1. USB FunctionFS https://www.kernel.org/doc/Documentation/usb/functionfs.txt 2. TCP Keepalive HOWTO http://www.tldp.org/HOWTO/html_single/TCP-Keepalive-HOWTO/ 3. Smack.txt https://www.kernel.org/doc/Documentation/security/Smack.txt 4. Socket Activation http://0pointer.de/blog/projects/socket-activation.html 5. Socket Activation, part II http://0pointer.de/blog/projects/socket-activation2.html 6. Converting inetd Services http://0pointer.de/blog/projects/inetd.html 7. Socket Activated Internet Services and OS Containers http://0pointer.de/blog/projects/socket-activated-containers.html systemd 249 SYSTEMD.SOCKET(5) ======================================================= Mount SYSTEMD.MOUNT(5) systemd.mount SYSTEMD.MOUNT(5) NAME systemd.mount - Mount unit configuration SYNOPSIS mount.mount DESCRIPTION A unit configuration file whose name ends in ".mount" encodes information about a file system mount point controlled and supervised by systemd. This man page lists the configuration options specific to this unit type. See systemd.unit(5) for the common options of all unit configuration files. The common configuration items are configured in the generic [Unit] and [Install] sections. The mount specific configuration options are configured in the [Mount] section. Additional options are listed in systemd.exec(5), which define the execution environment the mount(8) program is executed in, and in systemd.kill(5), which define the way the processes are terminated, and in systemd.resource-control(5), which configure resource control settings for the processes of the service. Note that the options User= and Group= are not useful for mount units. systemd passes two parameters to mount(8); the values of What= and Where=. When invoked in this way, mount(8) does not read any options from /etc/fstab, and must be run as UID 0. Mount units must be named after the mount point directories they control. Example: the mount point /home/lennart must be configured in a unit file home-lennart.mount. For details about the escaping logic used to convert a file system path to a unit name, see systemd.unit(5). Note that mount units cannot be templated, nor is possible to add multiple names to a mount unit by creating additional symlinks to it. Optionally, a mount unit may be accompanied by an automount unit, to allow on-demand or parallelized mounting. See systemd.automount(5). Mount points created at runtime (independently of unit files or /etc/fstab) will be monitored by systemd and appear like any other mount unit in systemd. See /proc/self/mountinfo description in proc(5). Some file systems have special semantics as API file systems for kernel-to-userspace and userspace-to-userspace interfaces. Some of them may not be changed via mount units, and cannot be disabled. For a longer discussion see API File Systems[1]. The systemd-mount(1) command allows creating .mount and .automount units dynamically and transiently from the command line. AUTOMATIC DEPENDENCIES Implicit Dependencies The following dependencies are implicitly added: • If a mount unit is beneath another mount unit in the file system hierarchy, both a requirement dependency and an ordering dependency between both units are created automatically. • Block device backed file systems automatically gain BindsTo= and After= type dependencies on the device unit encapsulating the block device (see below). • If traditional file system quota is enabled for a mount unit, automatic Wants= and Before= dependencies on systemd-quotacheck.service and quotaon.service are added. • Additional implicit dependencies may be added as result of execution and resource control parameters as documented in systemd.exec(5) and systemd.resource-control(5). Default Dependencies The following dependencies are added unless DefaultDependencies=no is set: • All mount units acquire automatic Before= and Conflicts= on umount.target in order to be stopped during shutdown. • Mount units referring to local file systems automatically gain an After= dependency on local-fs-pre.target, and a Before= dependency on local-fs.target unless nofail mount option is set. • Network mount units automatically acquire After= dependencies on remote-fs-pre.target, network.target and network-online.target, and gain a Before= dependency on remote-fs.target unless nofail mount option is set. Towards the latter a Wants= unit is added as well. Mount units referring to local and network file systems are distinguished by their file system type specification. In some cases this is not sufficient (for example network block device based mounts, such as iSCSI), in which case _netdev may be added to the mount option string of the unit, which forces systemd to consider the mount unit a network mount. FSTAB Mount units may either be configured via unit files, or via /etc/fstab (see fstab(5) for details). Mounts listed in /etc/fstab will be converted into native units dynamically at boot and when the configuration of the system manager is reloaded. In general, configuring mount points through /etc/fstab is the preferred approach. See systemd-fstab-generator(8) for details about the conversion. The NFS mount option bg for NFS background mounts as documented in nfs(5) is detected by systemd-fstab-generator and the options are transformed so that systemd fulfills the job-control implications of that option. Specifically systemd-fstab-generator acts as though "x-systemd.mount-timeout=infinity,retry=10000" was prepended to the option list, and "fg,nofail" was appended. Depending on specific requirements, it may be appropriate to provide some of these options explicitly, or to make use of the "x-systemd.automount" option described below instead of using "bg". When reading /etc/fstab a few special mount options are understood by systemd which influence how dependencies are created for mount points. systemd will create a dependency of type Wants= or Requires= (see option nofail below), from either local-fs.target or remote-fs.target, depending whether the file system is local or remote. x-systemd.requires= Configures a Requires= and an After= dependency between the created mount unit and another systemd unit, such as a device or mount unit. The argument should be a unit name, or an absolute path to a device node or mount point. This option may be specified more than once. This option is particularly useful for mount point declarations that need an additional device to be around (such as an external journal device for journal file systems) or an additional mount to be in place (such as an overlay file system that merges multiple mount points). See After= and Requires= in systemd.unit(5) for details. Note that this option always applies to the created mount unit only regardless whether x-systemd.automount has been specified. x-systemd.before=, x-systemd.after= In the created mount unit, configures a Before= or After= dependency on another systemd unit, such as a mount unit. The argument should be a unit name or an absolute path to a mount point. This option may be specified more than once. This option is particularly useful for mount point declarations with nofail option that are mounted asynchronously but need to be mounted before or after some unit start, for example, before local-fs.target unit. See Before= and After= in systemd.unit(5) for details. Note that these options always apply to the created mount unit only regardless whether x-systemd.automount has been specified. x-systemd.wanted-by=, x-systemd.required-by= In the created mount unit, configures a WantedBy= or RequiredBy= dependency on another unit. This option may be specified more than once. If this is specified, the normal automatic dependencies on the created mount unit, e.g., local-fs.target, are not automatically created. See WantedBy= and RequiredBy= in systemd.unit(5) for details. x-systemd.requires-mounts-for= Configures a RequiresMountsFor= dependency between the created mount unit and other mount units. The argument must be an absolute path. This option may be specified more than once. See RequiresMountsFor= in systemd.unit(5) for details. x-systemd.device-bound The block device backed file system will be upgraded to BindsTo= dependency. This option is only useful when mounting file systems manually with mount(8) as the default dependency in this case is Requires=. This option is already implied by entries in /etc/fstab or by mount units. x-systemd.automount An automount unit will be created for the file system. See systemd.automount(5) for details. x-systemd.idle-timeout= Configures the idle timeout of the automount unit. See TimeoutIdleSec= in systemd.automount(5) for details. x-systemd.device-timeout= Configure how long systemd should wait for a device to show up before giving up on an entry from /etc/fstab. Specify a time in seconds or explicitly append a unit such as "s", "min", "h", "ms". Note that this option can only be used in /etc/fstab, and will be ignored when part of the Options= setting in a unit file. x-systemd.mount-timeout= Configure how long systemd should wait for the mount command to finish before giving up on an entry from /etc/fstab. Specify a time in seconds or explicitly append a unit such as "s", "min", "h", "ms". Note that this option can only be used in /etc/fstab, and will be ignored when part of the Options= setting in a unit file. See TimeoutSec= below for details. x-systemd.makefs The file system will be initialized on the device. If the device is not "empty", i.e. it contains any signature, the operation will be skipped. It is hence expected that this option remains set even after the device has been initialized. Note that this option can only be used in /etc/fstab, and will be ignored when part of the Options= setting in a unit file. See systemd-makefs@.service(8). wipefs(8) may be used to remove any signatures from a block device to force x-systemd.makefs to reinitialize the device. x-systemd.growfs The file system will be grown to occupy the full block device. If the file system is already at maximum size, no action will be performed. It is hence expected that this option remains set even after the file system has been grown. Only certain file system types are supported, see systemd-makefs@.service(8) for details. Note that this option can only be used in /etc/fstab, and will be ignored when part of the Options= setting in a unit file. x-systemd.rw-only If a mount operation fails to mount the file system read-write, it normally tries mounting the file system read-only instead. This option disables that behaviour, and causes the mount to fail immediately instead. This option is translated into the ReadWriteOnly= setting in a unit file. _netdev Normally the file system type is used to determine if a mount is a "network mount", i.e. if it should only be started after the network is available. Using this option overrides this detection and specifies that the mount requires network. Network mount units are ordered between remote-fs-pre.target and remote-fs.target, instead of local-fs-pre.target and local-fs.target. They also pull in network-online.target and are ordered after it and network.target. noauto, auto With noauto, the mount unit will not be added as a dependency for local-fs.target or remote-fs.target. This means that it will not be mounted automatically during boot, unless it is pulled in by some other unit. The auto option has the opposite meaning and is the default. Note that if x-systemd.automount (see above) is used, neither auto nor noauto have any effect. The matching automount unit will be added as a dependency to the appropriate target. nofail With nofail, this mount will be only wanted, not required, by local-fs.target or remote-fs.target. Moreover the mount unit is not ordered before these target units. This means that the boot will continue without waiting for the mount unit and regardless whether the mount point can be mounted successfully. x-initrd.mount An additional filesystem to be mounted in the initramfs. See initrd-fs.target description in systemd.special(7). If a mount point is configured in both /etc/fstab and a unit file that is stored below /usr/, the former will take precedence. If the unit file is stored below /etc/, it will take precedence. This means: native unit files take precedence over traditional configuration files, but this is superseded by the rule that configuration in /etc/ will always take precedence over configuration in /usr/. OPTIONS Mount files must include a [Mount] section, which carries information about the file system mount points it supervises. A number of options that may be used in this section are shared with other unit types. These options are documented in systemd.exec(5) and systemd.kill(5). The options specific to the [Mount] section of mount units are the following: What= Takes an absolute path of a device node, file or other resource to mount. See mount(8) for details. If this refers to a device node, a dependency on the respective device unit is automatically created. (See systemd.device(5) for more information.) This option is mandatory. Note that the usual specifier expansion is applied to this setting, literal percent characters should hence be written as "%%". If this mount is a bind mount and the specified path does not exist yet it is created as directory. Where= Takes an absolute path of a file or directory for the mount point; in particular, the destination cannot be a symbolic link. If the mount point does not exist at the time of mounting, it is created as directory. This string must be reflected in the unit filename. (See above.) This option is mandatory. Type= Takes a string for the file system type. See mount(8) for details. This setting is optional. Options= Mount options to use when mounting. This takes a comma-separated list of options. This setting is optional. Note that the usual specifier expansion is applied to this setting, literal percent characters should hence be written as "%%". SloppyOptions= Takes a boolean argument. If true, parsing of the options specified in Options= is relaxed, and unknown mount options are tolerated. This corresponds with mount(8)'s -s switch. Defaults to off. LazyUnmount= Takes a boolean argument. If true, detach the filesystem from the filesystem hierarchy at time of the unmount operation, and clean up all references to the filesystem as soon as they are not busy anymore. This corresponds with umount(8)'s -l switch. Defaults to off. ReadWriteOnly= Takes a boolean argument. If false, a mount point that shall be mounted read-write but cannot be mounted so is retried to be mounted read-only. If true the operation will fail immediately after the read-write mount attempt did not succeed. This corresponds with mount(8)'s -w switch. Defaults to off. ForceUnmount= Takes a boolean argument. If true, force an unmount (in case of an unreachable NFS system). This corresponds with umount(8)'s -f switch. Defaults to off. DirectoryMode= Directories of mount points (and any parent directories) are automatically created if needed. This option specifies the file system access mode used when creating these directories. Takes an access mode in octal notation. Defaults to 0755. TimeoutSec= Configures the time to wait for the mount command to finish. If a command does not exit within the configured time, the mount will be considered failed and be shut down again. All commands still running will be terminated forcibly via SIGTERM, and after another delay of this time with SIGKILL. (See KillMode= in systemd.kill(5).) Takes a unit-less value in seconds, or a time span value such as "5min 20s". Pass 0 to disable the timeout logic. The default value is set from DefaultTimeoutStartSec= option in systemd-system.conf(5). Check systemd.exec(5) and systemd.kill(5) for more settings. SEE ALSO systemd(1), systemctl(1), systemd-system.conf(5), systemd.unit(5), systemd.exec(5), systemd.kill(5), systemd.resource-control(5), systemd.service(5), systemd.device(5), proc(5), mount(8), systemd- fstab-generator(8), systemd.directives(7), systemd-mount(1) NOTES 1. API File Systems https://www.freedesktop.org/wiki/Software/systemd/APIFileSystems systemd 249 SYSTEMD.MOUNT(5) ======================================================= AutoMount SYSTEMD.AUTOMOUNT(5) systemd.automount SYSTEMD.AUTOMOUNT(5) NAME systemd.automount - Automount unit configuration SYNOPSIS automount.automount DESCRIPTION A unit configuration file whose name ends in ".automount" encodes information about a file system automount point controlled and supervised by systemd. This man page lists the configuration options specific to this unit type. See systemd.unit(5) for the common options of all unit configuration files. The common configuration items are configured in the generic [Unit] and [Install] sections. The automount specific configuration options are configured in the [Automount] section. Automount units must be named after the automount directories they control. Example: the automount point /home/lennart must be configured in a unit file home-lennart.automount. For details about the escaping logic used to convert a file system path to a unit name see systemd.unit(5). Note that automount units cannot be templated, nor is it possible to add multiple names to an automount unit by creating additional symlinks to its unit file. For each automount unit file a matching mount unit file (see systemd.mount(5) for details) must exist which is activated when the automount path is accessed. Example: if an automount unit home-lennart.automount is active and the user accesses /home/lennart the mount unit home-lennart.mount will be activated. Automount units may be used to implement on-demand mounting as well as parallelized mounting of file systems. Note that automount units are separate from the mount itself, so you should not set After= or Requires= for mount dependencies here. For example, you should not set After=network-online.target or similar on network filesystems. Doing so may result in an ordering cycle. Note that automount support on Linux is privileged, automount units are hence only available in the system service manager (and root's user service manager), but not in unprivileged user's service manager. AUTOMATIC DEPENDENCIES Implicit Dependencies The following dependencies are implicitly added: • If an automount unit is beneath another mount unit in the file system hierarchy, both a requirement and an ordering dependency between both units are created automatically. • An implicit Before= dependency is created between an automount unit and the mount unit it activates. Default Dependencies The following dependencies are added unless DefaultDependencies=no is set: • Automount units acquire automatic Before= and Conflicts= on umount.target in order to be stopped during shutdown. • Automount units automatically gain an After= dependency on local-fs-pre.target, and a Before= dependency on local-fs.target. FSTAB Automount units may either be configured via unit files, or via /etc/fstab (see fstab(5) for details). For details how systemd parses /etc/fstab see systemd.mount(5). If an automount point is configured in both /etc/fstab and a unit file, the configuration in the latter takes precedence. OPTIONS Automount files must include an [Automount] section, which carries information about the file system automount points it supervises. The options specific to the [Automount] section of automount units are the following: Where= Takes an absolute path of a directory of the automount point. If the automount point does not exist at time that the automount point is installed, it is created. This string must be reflected in the unit filename. (See above.) This option is mandatory. DirectoryMode= Directories of automount points (and any parent directories) are automatically created if needed. This option specifies the file system access mode used when creating these directories. Takes an access mode in octal notation. Defaults to 0755. TimeoutIdleSec= Configures an idle timeout. Once the mount has been idle for the specified time, systemd will attempt to unmount. Takes a unit-less value in seconds, or a time span value such as "5min 20s". Pass 0 to disable the timeout logic. The timeout is disabled by default. SEE ALSO systemd(1), systemctl(1), systemd.unit(5), systemd.mount(5), mount(8), automount(8), systemd.directives(7) systemd 249 SYSTEMD.AUTOMOUNT(5) =======================================================